36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:11 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 9 -

the laws relating to fires or with the by-laws \mathbf{or} regulations ofthe Board of Fire Commissioners of New South Wales or such like authority or with any Acts or Regulations affecting the water supply or sewerage or the Board of Health or with the Factories Act or present or future laws or ordinances affecting the Shire or Municipality within which the demised premises are or may be situated or which may increase or contribute to the increase of the yearly premium payable on any Policy of Insurance against fire now or at any time hereafter to be effected by the Lessor that nothing herein contained shall impose upon the Lessee any responsibility or liability to effect or carry out any work of a structural nature.

HEATING:

4 234 8 1.

> The Lessee shall not use such methods (1)of heating which shall conflict with the requirements of the Underwriters of the Fire Association of New South Wales. The method of heating of the demised premises used by the Lessee shall be first approved by the Lessor such approval not to be unreasonably withheld. LESSEE TO

LESSEE TO INDEMNIFY LESSOR FOR NEGLIGENCE FIRE DAMAGE ETC:

- (m) The Lessee will and does hereby indemnify the Lessor from and against all actions claims demands losses damages costs and expenses for which the Lessor shall or may be or become liable in respect of or arising from:-
 - (a) the negligent use misuse or abuse by the Lessee or any servant agent sub-tenant invitee of or any other person claiming through or under the Lessee of the water

KA DD

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:12 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 10 -

gas electricity lighting and other services and facilities of the demised premises;

- (b) overflow or leaking of water (including rain water) in or from the premises caused or contributed to by any act or omission on the part of the Lessee his servants agents sub-tenants invitees or other persons claiming through or under the VESSEE -Lease;
- (c) loss damage or injury from any cause whatsoever to property or person caused or contributed to by the use of the premises by the Lessee or any servant agent subtenant invitee claiming through or under the Lesse;
- (d) damage or loss injury from any cause whatsoever to property or person within or without the premises occasioned or contributed to by any act omission neglect breach or default of the Lessee or any servant agent sub-tenant invitee or other person as aforesaid;

PROVIDED THAT the Lessee will not indemnify the Lessor from and against any actions, claims, demands, losses, damages, costs and expenses which are caused or contributed to by the D wilful or negligent acts or omissions of the Lessor or any servant, agent, invitee or any other person claiming through or under the Lesse.

NO ENCUMBRANCES:

(n) That the Lessee will not mortgage lien or in any way charge or encumber his interest in this Lease without the written consent of the Lessor first had and obtained.

DD.

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:13 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 11 -

LEGAL COSTS:

· · · · ·

15 5 5 5 E

(o) That the Lessee will on demand pay the Lessor's solicitor's reasonable costs charges and expenses of and incidental to the preparation and completion of this Lease, including Stamp Duty, Mortgagee's solicitor's costs and fees and registration fee payable to obtain a registered copy of the Lease.

NO AUCTION SALE:

(p) That the Lessee will not carry on or permit or cause to be carried on or be party or privy to any sale or sales by auction on the demised premises or any part thereof.

LIGHT FITTINGS:

(q) That the Lessee shall keep and maintain all light fittings in proper working order and condition and replace all tubes and parts thereof needful for the effective operation and use thereof.

OVERLOADING:

(r) That the Lessee shall not do permit or suffer to be done upon the said premises anything in the nature of overloading the floors thereof whereby the said premises or any part thereof may be strained or the walls or floors caused to sag or deflect from the right line or as to damage the said premises or any part thereof respectively and shall not bring any iron safe or heavy machinery or goods into the said premises without the consent of the Lessor first had and obtained, in writing.

NOTICE OF SALE OR RE-LETTING:

(s) That the Lessee will at anytime during three (3) months prior to the expiration of this Lease or any continuation thereof or during the period of any holding over hereunder permit the

CO DD.

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:14 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 12 -

Lessor to affix and exhibit any notice in or about the demised premises indicating the premises to be available for sale or lease and shall permit access to the Lessor its agents or prospective purchaser or lessees upon reasonable notice.

ELECTRICAL FIXTURES:

The Lessee shall at his own expense install all (t) electrical fixtures and fittings wiring and other things (if any) necessary for the installation of the electric light and power in the leased premises and all such fixtures and fittings and wiring and other things installed by the Lessee shall at the termination of this Lease be and become the property of the Lessor **PROVIDED** that any such installations shall not be made without the written consent of the Lessor's first had and obtained and provided that any such installation shall be approved and passed (if required) by the Fire Underwriters Association of New South Wales, the Sydney and Local County Council and such other Public Authority as shall be necessary.

PAYMENT OF CHARGES:

Lessee covenants (u) The to pay the proper authorities all charges for the telephone used and for electricity and gas consumed on the premises and for all trade waste and water and drainage usage in accordance with accounts rendered and if the Lessee makes default in the payment thereof it shall be optional for the Lessor to pay the same and in additional to the Lessor's other remedies it shall be lawful for the Lessor to recover the amount so paid as if same was overdue rent hereunder.

TENANTS FIXTURES:

NO DD

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:15 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

. . . .

- 13 -

All other fixtures plant machinery utensils (\mathbf{v}) shelving counters safes and other material or articles brought onto the premises by the Lessee shall be trade or tenant's fixtures and subject to the tenant rights and the Lessee may at or prior to the expiration or sooner determination of the Lease take remove and carry away the same from the premises but the Lessee shall in such removal do no damage to the premises and shall forthwith make good any damage which he may occasion thereto. The Lessee's obligations to observe or perform this covenant shall survive the expiration or other termination of this Lease. Any trade OT tenant's fixtures not removed at or prior to the expiration or sooner determination of the Lease shall be deemed to form part of the freehold property.

LESSEE TO ASSUME PUBLIC RISK:

eo DD.

The Lessee agrees to occupy use and keep the (w) premises at the risk of the Lessee and hereby releases to the full extent permitted by law the Lessor and its agents, servants, contractors and employees except to the extent of any wilful or negligent acts or omissions on their part from all claims and demands of every kind resulting from any accident, damage or injury occurring therein and theLessee expressly agrees that the Lessor shall have no responsibility or liability for any loss or damage to stock-in-trade fittings, fixtures, signs or personal property of the Lessee or loss of profits by the Lessee unless caused or contributed to by the wilful or negligent acts or omissions of the Lessor or its servants, agents, invitees or other persons claiming

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:16 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 14 -

through or under the Lessor. LESSOR NOT LIABLE FOR DAMAGES:

 (\mathbf{X}) Subject to clause 4 hereof Notwithstanding any implications or rule of law to the contrary the Lessor shall not be liable for any damages or loss the Lessee may suffer by any act, default or neglect of the Lessor, or any other person in carrying out the powers, authorities and provisions herein contained or otherwise with respect to the premises or the building or by reason of the Lessor neglecting to do something to the premises or to the building and which as between the Lessor and the Lessee it might be legally liable to do unless the Lessee has given the Lessor written notice to do such thing and the Lessor has without reasonable cause failed within a reasonable time thereafter to take proper steps to comply therewith.

COVENANTS BY THE LESSOR:

LESSEE'S FIXTURES:

- The Lessor covenants and agrees with the Lessee as follows:
 - (i) to pay all rates and takes in respect of the premises by the due date;
 - (ii) to effect building and public liability
 insurance in respect of the premises;
 AND
 - (iii)maintain the premises and carry out structural repairs as and when required.

Notwithstanding anything hereinbefore contained

the annual rental hereinbefore specified and the instalments by which such rental is payable shall be increased in the same proportion that

VARIATION-OF RENT AND INCREASE IN OUTGOINGS:

5. (a)

RENT:

RO DD

36 Req:Cl28336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:17 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 15 -

the Index Number at the commencement of any year of the term period bears to the Index Number as at the commencement of the term. Each shall be calculated from the date of year commencement of this subsequent Lease and annual anniversaries thereof. In Ahis clause the words "Index Number" shall mean the Consumer Price Index for Sydney published from time to time in the Commonwealth Statisticians Summary of Australian Statistics. In the event that there is a suspension or discontinuance of the Consumer Price Index for Sydney by the Commonwealth Authorities then the annual rental hereinbefore specified and the instalments by which such rental is payable shall be the mean of the rental as determined as the fair market rental value of the premises by two (2) Real Estate Valuers nominated by the then Secretary of the Real Estate Institute of New South Wales whose decision shall be conclusive and binding.

ADJOINING PREMISES:

6. It is hereby agreed and declared by and between the said Lessor and the said Lessee that in the event of any building or buildings being erected on any property adjoining the said premises in such manner that the light now obtained form any window or windows in the demised premises be shut off then the Lessor will not be held responsible to the Lessee nor will the matter be a subject for compensation or reduction of rent.

LESSEE'S DEFAULT:

DD

7. (a) If the rent hereby reserved or any part thereof or any other monies due pursuant to this Lease shall be unpaid for the space of fourteen (14) days after any of the days of which the same ought to have been paid although no formal

D

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:18 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

demand shall have been made therefore; or

- (b) If any Lessee being a Company shall pass an effective resolution to wind up (other than for the purposes of reconstruction) or shall be ordered by the Court to be wound up, or if any steps whatsoever be taken for the winding up whether compulsorily or otherwise; OR
- (c) If the Lessee or any future Assignee of the Lessee being a person or persons of his, her for their estate or estates shall be declared bankrupt or if he, she or they shall compound with or assign his, her or their estate or estates for the benefit of his, her or their creditors, or if he, she or they shall suffer execution to be levied upon the demised premises on the term hereby created; OR
- In the case of breach or non-compliance or non-(d) performance of any of the covenants conditions provisions or agreements hereby contained or implied and on the Lessee to be performed and observed THEN and in any such case it shall be lawful for the Lessor at anytime thereafter and whilst such neglect or default continues and without further notice or demand to enter (forcibly if necessary) into and upon the demised premises or any part thereof in the name of the whole and to reposes the same as of his former estate and expel the Lessee and those claiming under him and remove his effects from off the demised premises without being taken or deemed guilty of any manner of trespass or wrong but without prejudice to any action or right of action or remedy of the

CJDD.

36 Reg:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:19 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

Lessor in respect of any breach of the Lessee's covenants herein contained or implied and that thereupon this Lease shall if the Lessor so elects determine cease and be at an end and the Lessee shall be and remain liable for the rent and any other money payable pursuant to this Lease to the date of such entry at the rate hereinbefore reserved <u>PROVIDED THAT</u> the Lessor must mitigate its loss.

- Notwithstanding anything herein contained upon (e) the Lessor becoming entitled to re-enter or determine this Lease the residue of the said term for the time being unexpired shall at the option of the Lessor immediately upon Notice of the exercise of such Option being given to the Lessee be reduced to one (1)week and thereafter the tenancy thereby created shall be and remain a tenancy from week to week at a weekly rent equal to one (1) weeks proportion of the rent payable at that time commencing from the date of service of such notice and shall be determinable by one (1) weeks notice to quit terminating any day of the week.
- (f) The Lessor may, but shall not be obliged to, remedy at any time without notice any default by the Lessee under this Lease and whenever the Lessor so elects all costs and expenses incurred by the Lessor (including legal costs and expenses) in remedying a default shall so constitute a liquidated debt and shall be paid by the Lessee to the Lessor on demand.
- (g) If the rent hereby reserved or any part thereof or any other monies payable by the Lessee to the Lessor hereunder shall not be paid on the day upon which the same shall become due (whether any formal or legal demand therefore

1. 11.

GA DD

. 1. 5

36 Req:Cl28336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:20 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 18 -

shall have been made or not) then the Lessee shall pay to the Lessor interest at the rate of FIFTEEN (15%) PERCENTUM PER ANNUM to the date on which such monies are paid or recovered by the Lessor as the case may be. The Lessor shall be entitled to recover such interest from the Lessee as if such interest was rent in arrears. Nothing contained in this Clause shall be deemed to restrict limit or prejudice any right power or remedy of the Lessor in respect of such monies.

That upon the Lessor becoming entitled to re-(h) enter the premises pursuant to any provision of this Lease the Lessee shall forthwith remove from the premises all goods (which expression where hereinafter used shall include personal property over every description) which may be thereon or therein and in default of the Lessee effecting such removal the Lessor upon entering into possession of the premises may remove all such goods from the premises to such place or places as the Lessor may see fit and shall be deemed to have the authority of the Lessee to deposit the same and at the expense of the Lessee with a warehouseman selected by the Lessor and in doing so the Lessor shall not be liable or responsible for loss or damage to or warehousing expenses in respect of the whole or any part of such goods which shall be at the Lessee's risk and expense at all times and all costs and expenses incurred by the Lessor in such removal and deposit shall notwithstanding that this Lease shall then have terminated be and be deemed to be a liquidated debt payable by the Lessee to the Lessor upon demand.

(i) No consent or waiver expressed or implied by

EO bb.

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:21 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 19 -

the Lessor to or of any breach of any covenant condition or duty of the Lessee shall be construed as a consent or waiver to any other breach of the same or any other covenant of condition or duty.

HOLDING OVER:

MONTHLY HOLDING OVER:

- 8. It is hereby <u>FURTHER MUTUALLY AGREED AND DECLARED</u> as follows:
 - (a) In the event of the Lessee holding over after the expiration or prior determination of the term granted by this demise with the consent of the Lessor, the Lessee shall become a monthly tenant only of the Lessor at a monthly rental being a monthly proportion of the annual rent payable hereunder but varied as provided by Clause 5 hereof and otherwise on the same terms and conditions as those herein contained as far as applicable.

NOTICES AND INTERPRETATIONS:

- (a) That the covenants powers and provisions implied in Leases by Sections 84, 85, 133 and 133A of the Conveyancing Act, 1919-1958 shall not apply to and are hereby excluded from this Lease.
 - (b) That any demand or notice to be given by either party to the other shall be deemed to be duly given in writing signed by that party or their agent and delivered to the other party personally or sent by post addressed to the other party at their last known address, or at the premises in the case of the Lessee.
 - (c) Where the context so admits in the construction of any covenant or proviso or other provision contained or implied in this Lease words importing the singular or plural number or the

. (

CA DD

9

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:22 of 33 Ref:1pi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 20 -

masculine gender shall be read aв also importing and including the plural or singular number and the feminine gender as the case may require, and a covenant, proviso or provision in which more persons than one are by the context deemed to covenant agree or appoint, shall be deemed to bind and extend to such persons and any two of them severally (whenever a corporation shall be a party hereto either as Lessor or Lessee the words "Lessor", "Lessee" or "Persons" whenever herein used shall be deemed to mean and include such corporation, its successors, assignees and transferees) and the word "Lessee" or "Guarantor" shall include his executors, administrators, successors and permitted assignees and the word "Lessor" shall mean and include the Lessor's _ executors, administrators, successors and assigns.

DEEMED AGREEMENT UNDER SEAL:

- 10. That this document shall be deemed an agreement under seal for the granting of such a Lease as is hereby purported to be granted and the covenants and conditions herein contained shall be deemed to bind the parties in the same manner as if <u>THIS DOCUMENT</u> <u>WERE REGISTERED NOTWITHSTANDING THAT IT MAY BE</u> held that no estate passes hereunder <u>PROVIDED</u> that should the Lessee require registration the Lessor will procure the same but any necessary survey and the registration of such Lease and the obtaining of all necessary consents thereto shall be at the cost or expense of the Lessee.
- 11. The Lessee shall advise the Lessor and the Managing Agent of the building for the time being of the private address and telephone number of the Lessee or if the Lessee shall be a corporation of the Manager thereof or if there shall be more than one

LEG DD

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:23 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 21 -

Lessee of each of them. The Lessor and the Managing Agent shall be promptly informed of any change of such address and telephone number.

PEST CONTROL:

1. 1. 1. ×

12. The Lessor reserves the right from time to time to arrange for pest control examination of the premises and if any service is required as a result of such examination then the total cost for such examination and service shall be borne by the Lessee.

AIR CONDITIONING:

- 13. The Lessee covenants with the Lessor that the following provisions shall apply to the plant and machinery and equipment, for heating cooling or circulating air (herein called "Air Conditioning Plant") installed on the premises:
 - (i) the Lessee shall at all times use and regulate the same to ensure that the air conditioning plant is employed to the best advantage and under conditions from time to time prevailing and shall keep such air conditioning plant in good repair and condition and shall pay all costs of maintaining and operating the same;
 - (ii) the Lessors shall not be under any liability to the Lessee or to any other person arising from any breakdown of or any inability or failure to operate and maintain the air conditioning plant at any time or times for any reason whatsoever.

BUSINESS CONTROL:

14. The Lessee will not enter into any partnership or arrangement in relation to the business carried out on the subject demised premises without the consent in writing of the Lessor such consent not to be unreasonably withheld.

LOCK UP:

15. The Lessee will use his best endeavour to protect and keep safe the demised premises and any property

ES DD

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:24 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

contained therein from theft or robbery and shall keep all doors windows and other openings closed and securely fastened when either the Lessors or any responsible employee or agent of the Lessee is not present on the demised premises or the demised premises are not open for business and the Lessee may maintain such security or other services as may be necessary for this purpose.

LESSEE'S INDEMNITY:

Unless caused or contributed to by the wilful or 16. negligent acts or omissions of the Lessor or its agents, invitees or any other persons servants, claiming through or under the Lessor the Lessee will indemnify and hold harmless the Lessors from and against all damages sums of money costs charges expenses actions claims and demands which may be sustained or suffered or recovered or made against the Lessors by any person for any loss damage or injury such person may sustain when using or entering portion of the premises whether in the occupation of the Lessor, the Lessee or any other person whether or not such injury arises or has arisen as a result of any act or omission neglect breach or default by the Lessee or any servant agent clerk workman employee or invitee of the Lessee or as a result of the creation of some dangerous thing or state of affairs by the Lessee or by any clerk servant agent workman employee or invitee of the Lessee and whether the existence of such dangerous thing or state of affairs was or ought to have been known to the Lessor or not. It is hereby expressly agreed and declared that the Lessors shall not be liable for any damage the Lessee or its clerks servants licensees invitees workmen employees agents customers or visitors of the Lessee may suffer by reason of any injury or damage to any person or

ED DD.

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:25 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 23 -

property who or that may be at any time in the premises arising from any cause or reason whatsoever but including the overflow of water supply or rain water which may leak into the demised premises or any premises attached to or connected with the same or from any parts of the demised premises or any building attached to or connected with the same or arising from any defects in gas, electric or water supply connection or fittings or appliances used in connection thereof except where that injury or damage is caused or contributed to by the wilful or negligent acts or omissions of the Lessor or its servants, agents, invitees or persons claiming through or under the Lessor.

The Lessee will during the said term well and 17. sufficiently repair and maintain and keep the said premises with the appurtenances in good and substantial repair including painting and all fixtures fittings gas electric and otherwise locks and keys and all things thereto belonging or which at any time during the said term shall be erected and made by the Lessors when and where and so often as need be with reasonable wear and tear and damage by fire, not attributable to any act or omission by the Lessee or omission by the Lessee's servants, agents or workmen invitees lightning flood and tempest only excepted. Provided that the Lessee shall take all reasonable measures and precautions to ensure that any damage defect or dilapidation which has been or at any time shall be occasioned by reasonable wear and tear shall not give rise to or cause or contribute to any substantial injury to the demised premises. The Lessee will at all times during the continuance of this Lease keep and at the expiration or sooner determination of the said term peaceably surrender and yield up unto the Lessors

CERI DD.

ية. م ²ريد ه 36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:26 of 33 Ref:1pi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 24 -

the said premises with the appurtenances and all building erections fixtures erected or made by the Lessors thereon and all the Lessors fixtures and fittings water gas electric light or otherwise locks and kevs in good and substantial repair and condition having regard to the condition thereof at the commencement of this Lease reasonable wear and tear and damage by fire not attributable to any act or omission or commission by the Lessees agents servants or workmen or invitees, lightning flood and tempest only excepted. Provided that the Lessee shall take all reasonable measures and precautions to ensure that any damage defect or dilapidation which has been or at any time shall be occasioned by reasonable wear and tear shall not give rise or cause or contribute to any substantial injury to the demised premises.

ASSIGNMENT:

- The Lessee will not during the continuance of this 18. Lease assign transfer or sublet part with or share the possession of or grant any license affecting or mortgage charge or otherwise deal or dispose of the demised premises or any part thereof or any estate or interest therein or by any act or deed procure the demised premises or any part thereof or any estate or interest to be assigned transferred demised sublet unto share or put into possession of any person or persons licensed mortgaged charges or otherwise dealt with or disposed of unless:
 - (i) The Lessee gives to the Lessor not less than
 one (1) months notice in writing of its desire
 to deal with the premises in manner aforesaid;
 - (ii) The Lessee is not at the time of giving such notice or thereafter in default in the observance or performance of the covenants and agreements on the Lessees part herein contained

CODD.

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:27 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 25 -

or implied;

10, × 3

- (iii) The Lessee proposes to assign transfer sub-let or grant a license to a person or entity who not less than fourteen (14) days prior to any such assignment transfer sub-lease or grant:-
 - (aa) proves to the satisfaction of the Lessor that he is a respectable, responsible and solvent person of stature and experience comparable to that of the Lessee and capable of adequately carrying on the business proposed to be carried on by him in the premises;
 - (bb) enters into a covenant with the Lessor in the form required by the Lessor that he will duly perform and keep the covenants and agreements on the Lessees part herein contained;
 - (cc) furnishes to the Lessor such guarantee or guarantees of the performance of his obligations under this Lease as the Lessor shall require;
 - (dd) pays to the Lessor a reasonable fee to cover administrative expenses and also its proper costs and disbursements of and incidental to the giving of its consent; and in any case with the prior written consent of the Lessor and subject to the Lessee complying with all the foregoing provisions of this sub-clause such consent shall not be

RENT:

19. The Lessee shall pay to the Lessor the annual rental of ONE HUNDRED AND TWENTY THOUSAND DOLLARS (\$120,000.00) payable calendar monthly in advance to the Lessor or as he may direct by calendar monthly

()

unreasonably withheld.

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:28 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

instalments of TEN THOUSAND DOLLARS (\$10,000.00) each.

OPTION:

- 20. It is hereby expressly agreed and declared that if the Lessee shall desire to take a renewed Lease of the demised premises for a further term of FOUR (4) YEARS from the expiration of the term of this Lease and of such desire shall prior to the expiration of the said term give to the Lessor not less than THREE (3) CALENDAR MONTHS PREVIOUS NOTICE IN WRITING and shall in the meantime duly and punctually pay the rent reserved by this Lease at the time herein appointed for payment and shall duly perform and observe the covenants and agreements by and on the part of the Lessee contained in this Lease up to the expiration of the term herby granted including covenant to pay rent the Lessor will at the cost of the Lessee demise to the Lessee the said premises hereby demised for a further term of FOUR (4) YEARS at a rental to be determined by either of the following methods whichever is the greater :-
 - (i) by increasing the rent in the same proportion that the Index Number as at the expiration of the term of the Lease increases in relation to the Index Number as at the commencement of the term of this Lease. In this Clause the words "Index Number" shall mean the Consumer Price Index for Sydney published from time to time in the Commonwealth Statisticians Summary of Australian Statistics. In the event that there is any suspension or discontinuance of the Consumer Price Index by the Commonwealth Authorities then "Index Number" shall mean the New South Wales Male Basic Wage applicable in the City of Sydney.

(ii) the mean of the rental as determined as the

GJ D D

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:29 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

- 27 -

fair market rental value of the premises by two (2) Real Estate Valuers nominated by the then Secretary of the Real Estate Institute of New South Wales

PROVIDED ALWAYS that notwithstanding such determination the rental payable by the Lessee in respect of the renewed term shall not be less than the rental for the final year of the term of this Lease. The said Lease shall be otherwise on the same terms and conditions as this Lease with the exception of this Clause.

FUNDAMENTAL TERMS:

N. F. K. K

- 21. It is hereby expressly agreed and declared that the covenants by the Lessee contained or implied in the provisions dealing with:-
 - (a) the payment of rent;
 - (b) inter alia, relating to maintenance and repair;
 - (c) inter alia, relating to assignment, sub-letting or otherwise of the demised premises;
 - (d) inter alia, relating to the use of the demised premises;
 - (e) inter alia, relating to insurances;

are (subject to the proviso hereinafter contained) essential and/or fundamental terms of this Lease and the breach, non-observance or non-performance of any one or more of such covenants, terms and conditions shall be deemed to be a fundamental breach of the provisions of this Lease on the part of the Lessee to be observed and performed (**PROVIDED THAT** the presence of this Clause in this Lease shall not mean or be construed as meaning that there are no other fundamental and/or essential terms in this Lease). Should the Lessor terminate this Lease following any such fundamental breach or otherwise then without prejudice to any other right or remedy of the Lessor herein contained or implied <u>IT IS EXPRESSLY AGREED</u>

KO DD.

- 28 -

AND DECLARED that the Lessor shall be entitled to recover from the Lessee as and by way of liquidated damages for such breach the difference between the aggregate of the rent, and any other monies which would have been payable by the Lessee for the unexpired residue ∩f the term but for such determination calculated from the date of such determination to the date of termination of this Lease referred to at the commencement of this Lease less the aggregate of the several rentals and other monies which the Lessor by taking proper steps to re-let the premises shall obtain or could reasonably be expected to obtain by re-letting the premises for the unexpired residue of the term (if any) PROVIDED in so doing the Lessor shall not be ALWAYS THAT required or obliged to offer or accept in respect of such re-letting terms, covenants, conditions or stipulations herein contained or implied.

2. Notwithstanding anything else herein contained it is agreed that upon any review of rent referred in this Lease the rent shall not be less than the rent paid for the previous year.

- 23. The Lessee agrees at its expense and in a good and workmanlike manner to carry out the following to the premises at the commencement of the term of this Lease:-
 - a. provision of fire prevention sprinkler system;
 - b. electrical upgrade for inflammable liquids;
 - c. supply of carpet to office area.

100

The Lessee agrees that upon termination of this Lease the fire prevention sprinkler system, electrical installation and carpet referred to herein shall become landlords fixtures and be and shall remain the property of the Lessors. 36 Req:Cl28336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:31 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only. - 29 -25. Notwithstanding anything else herein contained it is agreed that clause 5 of this Lease Shall not apply for the period 1996 to 2000.

 \mathbf{T}_{i}

[SEE OVER FOR CLAUSE 26]

60 00

Ref lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purpbees Only. - 30 26. (a) The Lessee agrees, and it is an essential term and condition of this Lease, that the Lessee shall during the first term of this Lease at its own cost install a fire sprinkler system in the premises in accordance with all regulations and/or by-laws of any statutory body including the Board of Fire Commissioners of New South Wales or such like authority at an approximate cost of \$70,000.00.

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:32 of 33

- (b) The Lessee agrees to be responsible at its own expense during the term of this Lease and any renewal thereof for all maintenance and/or servicing of the fire sprinkler system and the Lessee further agrees that at the termination of this Lease the fire sprinkler system shall be and become the property of the Lessor and shall remain part of the property.
- (c)

Clause 26(a) shall be deleted from this Lease during any further term.

'0333z/DJW

÷.

36 Req:C128336 /Doc:DL 3057440 /Rev:20-May-1997 /Sts:OK.OK /Prt:29-Apr-2014 11:33 /Pgs:ALL /Seq:33 of 33 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

CONSENT TO LEASE

Annexure to Lease

From

EVANGELOS DANIAS & DINA DANIAS

To DREW AUSTRALIA PTY. LIMITED A.C.N. 001 584 523

Dated 11th October, 1996

National Australia Bank Limited A.C.N. 004044937 as Mortgagee under Mortgage(s) No.(s)

2775657 HEREBY CONSENTS to the within Lease subject to and without in any way limiting abridging affecting or prejudicing the rights powers and remedies of the Mortgagee under the said Mortgage(s) (or any of them) which rights powers and remedies shall remain in full force and effect as if this consent had not been given Save and Except that so long as the covenants conditions and provisions of the within Lease are duly observed and performed the Mortgagee will in the event of the exercise of the power of sale or other power or remedy of the Mortgagee on default under the said Mortgage(s) (or any of them) exercise the same subject to the then subsisting rights of the Lessee(s) under the within Lease And this limited consent is also given on the express condition that the consent of the Mortgagee is procured in all cases where the consent of the Lessor(s) is necessary under the within Lease that the Mortgagee shall not be obliged to perform any covenant or agreement by the Lessor(s) contained in the within Lease and that all rights powers and remedies of the Lessor(s) under the within Lease shall absolutely vest in and be exercisable and enforceable by the Mortgagee immediately upon the Mortgagee giving notice to the Lessee(s) of demand to enter into receipt of the rents and profits of the leased premises.

Signed at Sydney this	8th		day of	April	. 19	97
Signed in my presence by Fiona Mary Ferguson the Attorney of National Austra pursuant to Power of Attorney registered N Book 3834 who is person))	Bank Limited h has no notice of	on behalf of Na by its said Attorr of the revocation time of his exe	ey who states to of the said Poy	that he wer of
garreld	George St., Sydmay)	*****	Alley	Ald Ber	
V Kylio BARNETT	Bent Officer		RETAIL	DOUMENTATION	MANAGER	
	.1					

/Rev:29-Apr-2010 /Sts:OK.OK /Prt:29-Apr-2014 11:32 /Pgs:ALL /Seq:1 of A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only. Reg:C128334 /Doc:DL 1279691 WARNING: A4 **RP13** RANSFER Property Act, 1900 Officer 20/228267100 00 7077 262020 \$5"00 LAND TRANSFERRED (A) Show no more than 20 References to Title. Folio Identifier AUTO CONSOL 10880-76 If appropriate, specify the share transferred. LODGED BY L.T.O. Box Name, Address or DX and Telephone (B) FRED A. & OURN F. NEWMAAN 122 Castloroagh Street 83 R SYDNEY NEW 2000 SYDNEY DX. -665 REFERENCE (man-15 characters)- NHG TRANSFEROR MILANO PROPERTIES PTY LIMITED ACN. 000 3c3766 (C) ****** acknowledges receipt of the consideration of ...\$559+990+99 (0) and as regards the land specified above transfers to the transferee an estate in fee simple subject to the following ENCUMBRANCES (E) 1. 2. 3. TRANSFEREE (F) EVANGELOS DANIAS and DINA DANIAS as joint tenants/tenants in common (G) DERT / DATE OF EXECUTION (H) We certify this dealing correct for the purposes of the Real Property Act, 1900. Connuon Seal Signed in my presence by the transferor who is personally known to me, A. C. N. The COMMON SEAL of MILANO PROPERTIES PTY LIMITED was hereunto affixed by the ...authority..of..the.Board.of.Directors in the Signate Winese presence of: HOLDOW LETTER SECRETARY/DIRECTOR ...DIRECTOR Signature of Transferor Signed in my presence by the transferce who is personally known to me. Signature of Witness Name of Wilness (BLOCK LETTERS) Address of Witness ignature of Transferre ' SOCICIFOR NEIL H.A.GEIKIE ESP INSTRUCTIONS FOR FILLING OUT THIS FORM ARE AVAILABLE FROM THE LAND TITLES OFFICE CHECKED BY (office use only) Ausdoc Commercial and Law Stationers 1991

32 Reg:C128332 /Doc:CT 10880-076 CT /Rev:16-Dec-2010 /Sts:OK.OK /Prt:29-Apr-2014 11:38 /Pgs:ALL /Seg:1 of Ref: Supplied by Copy LPT NSW for Conveysm -A4 Only. FICATE OF TITLE 10880076 NEW SOUTH WALES ERTY ACT, 1900, as emended. ē Ş. Appln. No. 823 880 Val Fol Prior Titles Vol. 676 Fol. 248 9 Vol.744 Fol.189 Vol.4570 Fol.137 E-Edition issued 10-9-1968 Vol.4570 Fol.143 ÀS 1125837 Vol.5188 Fol. 16 З I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. 0.880 mates-J. Bolliver Witness Registrar General. **WARNING** PLAN SHOWING LOCATION OF LAND CANCE No. 224400 (Page 1) 140122m THIS DOCUMENT MUST NOT SEE AURO FOLIO 9 156 PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NUTHCATION HEREON ф 155 Faversham Ind. 35%pen 154 153 BE REMOVED FROM Width and Van Sfeet wide 152 126 151 L125837. 4.11 40 feet one inch ss/t THE LAND TITLES ESTATE AND LAND REFERRED TO S Estate in Fee Simple in Lots 152 to 156 inclusive in Deposited Plan 761 in the Municipality of Marrickville Parish of Petersham and County of Cumberland being part of 470 mores granted to Thomas Moore on 5-10-1799. FIRST SCHEDULE (continued overleaf) MILANO PROPERTIES PTY. LIMITED. SECOND SCREDULE (continued overleaf) OFFICE 1. Reservations and conditions, if any, contained in the Grown Grant above referred to. 2, Fasement for Stormwater Drainage created by Resumption No. C944060 affecting the piece of land 9 feet wide and variable width shown in the plan horeon; Registrar General NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

			TY V.C.N. Blight, G	Gaveranont Printer	
FIRST SCHEDULE (continued)					
and the first of the second	INSTRUMENT NATURE NUMBER	IENT IBER [DATE	ENTERED	Signature of Registrar General	
					1195838
					L 5/5542 Unit
					PIRSS IN 12 DI
					July - Rochin
					X SK6 DOMICY
					X
					Laberert &
AND A REPORT AND A REPORT OF	ENTERED Signature of				1972428W
Marie Marie Para 1 1 1 1 1 1 1		0			30.54
Markey al 1 - 10 30 g - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	and the second second	decharged	1 515549 2	Jamesan	
<u>northesee</u> <u>edfr00023</u>	<u> 2</u>	5	8-12-1989		
V97242961 aasta In Kritsti bilanaa Tii Siyaa Kritstin Waxaa Kritstin Waxaa Kritstin Waxaa Kritstin A	2-1919	1972428	22-5-1990		
1-12-11993. Registered 22-5-6 Poor					
1V(E) 7972428 Lease 7972430/Ledse to Austral Swiss Khittring Ptv/ Limited Exhines 30.71-9004. 004.52					
renewalt for 2. years . Registered 22.5.1990					
NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGI	THE REGISTRAR GENERAL BRE CANTED ED				

LAND

TITLE SEARCH

Computer Folio Certificate issued under Section 96D of the Real Property Act 1900

No. 94

Search certified to:

29/4/2014 10:31 AM

1/999026	,
EDITION No. & DATE OF CURRE	INT CERTIFICATE OF TITLE

4

COMPUTER FOLIO REFERENCE

25/1/2011

Page 1

LOT 1 IN DEPOSITED PLAN 999026 AT MARRICKVILLE LOCAL GOVERNMENT AREA MARRICKVILLE PARISH OF PETERSHAM COUNTY OF CUMBERLAND TITLE DIAGRAM DP999026

FIRST SCHEDULE

DANIAS HOLDINGS PTY LIMITED

(T AG23618)

SECOND SCHEDULE (4 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 QUALIFIED TITLE. CAUTION PURSUANT TO SECTION 28J(1) AND 28J(1A) OF THE REAL PROPERTY ACT, 1900. ENTERED 14.11.1996 BK 4145 NO 65 (LOT 1)
- 3 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.
- 4 AG23619 MORTGAGE TO NATIONAL AUSTRALIA BANK LIMITED

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

The Registrar General certifies that at the date and time specified above the person(s) described in the First Schedule was the registered proprietor of an estate in fee simple (or other such estate or interest set out in the Schedule) in the land described, subject to any exceptions, encumbrances, interests, and entries which appear in the Second Schedule.

doccop1

PRINTED ON 29/4/2014

94

Registrar General

* ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

LAND

TITLE SEARCH

Computer Folio Certificate issued under Section 96D of the Real Property Act 1900

No, 96

Search certified to:

29/4/2014 10:31 AM

C	OMPUTER	FOLIO	REFERENCE	

2/999026

(T AG23618)

EDITION No. & DATE OF CURRENT CERTIFICATE OF TITLE 4 25/1/2011

Page 1

LOT 2 IN DEPOSITED PLAN 999026 AT MARRICKVILLE LOCAL GOVERNMENT AREA MARRICKVILLE PARISH OF PETERSHAM COUNTY OF CUMBERLAND TITLE DIAGRAM DP999026

FIRST SCHEDULE

DANIAS HOLDINGS PTY LIMITED

SECOND SCHEDULE (4 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 QUALIFIED TITLE. CAUTION PURSUANT TO SECTION 28J(1) AND 28J(1A) OF THE REAL PROPERTY ACT, 1900. ENTERED 14.11.1996 BK 4145 NO 66 (LOT 2)
- 3 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.
- 4 AG23619 MORTGAGE TO NATIONAL AUSTRALIA BANK LIMITED

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

doccop1

PRINTED ON 29/4/2014

The Registrar General certifies that at the date and time specified above the person(s) described in the First Schedule was the registered proprietor of an estate in fee simple (or other such estate or interest set out in the Schedule) in the land described, subject to any exceptions, encumbrances, interests, and entries which appear in the Second Schedule.

ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

96

Registrar Genoral

HISTORICAL TITLE SEARCH

Certificate issued under Section 96G of the Real Property Act 1900

A division of the Department of Finance & Services No . 95

> Search certified to: 29/4/2014 10:35AM Computer Folio Reference: 1/999026

First Title(s): OLD SYSTEM Prior Title(s): CA69444

	Recorded	Number	Type of Instrument	C.T, Is	sue
	14/11/1996	CA69444	CONVERSION ACTION	FOLIO C EDITION	
	17/2/1999	5611740	DEPARTMENTAL DEALING		
≁	12/8/2004 12/8/2004 12/8/2004	AA873545 AA873547 AA873548	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION	2
×	8/3/2010	AF356708	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION	3
¥	25/1/2011 25/1/2011 25/1/2011	AG23617 AG23618 AG23619	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION	4

*** END OF SEARCH ***

doccop1

The Registrar General certifies that at the date and time specified above the information set out in this search constitutes the historical record of all dealings recorded in or action taken in respect of the mentioned title which is required to be kept by the Registrar General under section 32(7) of the Real Property Act 1900.

95

Page 1

HISTORICAL TITLE SEARCH

Certificate issued under Section 96G of the Real Property Act 1900

A pivision of the Department of Finance & Services

No. 97

Search certified to: 29/4/2014 10:35AM Computer Folio Reference: 2/999026

First Title(s): OLD SYSTEM Prior Title(s): CA69444

	Recorded	Number	Type of Instrument	C.T. Issue
	14/11/1996	CA69444	CONVERSION ACTION	FOLIO CREATED EDITION 1
	17/2/1999	5611762	DEPARTMENTAL DEALING	
×	12/8/2004 12/8/2004 12/8/2004	AA873546 AA873547 AA873548	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 2
*	8/3/2010	AF356708	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 3
7	25/1/2011 g 25/1/2011 25/1/2011	AG23617 AG23618 AG23619	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 4

*** END OF SEARCH ***

doccop1

97

Page 1

The Registrar General certifies that at the date and time specified above the information set out in this search constitutes the historical record of all dealings recorded in or action taken in respect of the mentioned title which is required to be kept by the Registrar General under section 32(7) of the Real Property Act 1900.

<u>49 Req:C128349</u> /Doc:DL AG023618 /Rev:01-Feb-2011 /Sts:OK.OK /Prt:29-Apr-2014 11:38 /Pgs:ALL /Seq:1 of 1 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

	Form: 01T Release: 4.1 www.lpma.nsw.g	ov.au New Sou Real Proper	ty Act 1900 AC23618Y	
	PRIVACY NOTE: by this form for	Section 31B of the Real Property Act 1900 (RP Act)	authorises the i. Real Property Act Register, Section 968 RP Act regi	· · · · · · · · · · · · · · · · · · ·
	the Register is m	ace available to any person for search upon paym	tent of a fee, if any sea Office of State Revenue	<u>uires</u> that
	STAMP DUTY	Office of State Revenue use only	Client No: 1411509	2655
			Duty: \$10/ Trans No. 60670	
			Asst details:	
(A)	TORRENS TITLE		12.11.1	
		FOLIO'S 1/999026 and 2/999026		
(B)	LODGED BY	Document Name, Address or DX, Telephone	e, and Customer Agcount Number if any I Homebush Building C T Homebush Bay Drive 1 02 1 Homebush Bay Drive 1 02 1 Homebush Bay Drive	DES
		Collection Box	THOMAS BUILD	JT
		45A	Thodes Nor Barrow	
		Reference: 11A55	102 W 2130 WQ	K TW 🔬
(Ç)	TRANSFEROR	NAECOURT PERFECT PAINT PTY LIMI		alm
(D)	CONSIDERATION	The transferor acknowledges receipt of the consid	eration of \$ 1,050,000.00 and	as regards
(E)	ESTATE	the abovementioned land transfers to the transfe	ree an estate in fee simple	, t
(F)	SHARE TRANSFERRED			Je -
(G)		Encumbrances (if applicable):		mage
(H)	TRANSFEREE	DANIAS HOLDINGS PTY LIMITED AC	N 127 813 781	1/2
(I)		TENANCY:	(QVI)	
	DATE			<u> </u>
	and executed on b authorised person pursuant to the au Corporation: N	For the purposes of the Real Property Act 1900 whalf of the corporation named below by the (s) whose signature(s) appear(s) below thority specified. AECOURT PERFECT PAINT PTY LIMITED ection 127 of the Corporations Ac		*
	Signature of authority	orised person:	Signature of authorised person:	
	Name of authorise Office held:	ed person:	Name of authorised person: Office held;	sRG
			- SLE - TOREANCHER	RETARY-
			Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below	, W.
			signature: UBCYG-	~
			Signatory's name: MICHAEC BERUAGA Signatory's capacity: transferee's solicitor	VIII.
(K)	The transfere	certifies that the eNOS	data relevant to this dealing has been submitted and stor	red under
	eNOS ID No.	Full name:	Signature:	
1008	ALI, HANDWRITING ;	MUST BE IN BLOCK CAPITALS. Page 1 of	LAND AND PROPERTY MANAGEMENT A	UTHORIT Y

.

50 Req:C128350 /Doc:DL AF356708 /Rev:09-Mar-2010 /Sts:OK.OK /Prt:29-Apr-2014 11:36 /Pgs:ALL /Seq:1 of 2 Ref:lpi:sixdre /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only.

•	Form: 12PV Release: 3.0 www.lands.nsw.go	ט ע.מ ט	FOR REPL CERTIFICAT New So	CATION ACEMEN1 FE OF TIT	AF35670)8N
	by this form for	the establish	the Real Property Act 1900 (RP Act) ement and maintenance of the J o any person for search upon payr	Real Property Act	Register. Section 96B RP Ac	
(A)	(A) CERTIFICATE OF TITLE 1/999026 & 2/999026					
(B)	LODGED BY	Document Collection Box 45A	Name, Address or DX, Telephon NATIONAL AUSTRALIA BAN LEVEL 5, BUILDING C, 2 RHODES NSW 2138 Reference: C/N 827708768	1K		CODE PV
(C)	REGISTERED PROPRIETOR	NAECOURT	PERFECT PAINT PTY LIMI	TED ACN: 1	105 315 189	<u></u>
(D)	APPLICANT	NATIONAL	AUSTRALIA BANK ACN 12	004 044 937		
(E) (F)	 mislaid The applicant— is a private pe is a corporation is a lending in had custody of a lending in a lending in a legal property a licensed [If other, specements 	destroya erson who is a on which is a institution havi of the certificat institution not institution. institution. institution. institution. institution. institution. institution. institution. institution. institution. institution. institution. institution. institution. institution. institution. institution. institution.	a registered proprietor of the land registered proprietor of the land i ing a registered first mortgage ove ate of title at the time it was mislai having a registered first mortgag	n the certificate of er the land in the ce id, destroyed, etc, a c over the land in th eting the relevant a	² title. title. rtificate of title. and is he certificate of title. authorities to validate any suppo	orting evidence
(G)	I certify that the p I am personally a	crson(s) signi cquainted or a	ing opposite, with whom is to whose identity I am instrument in my presence.	Act 190	ct for the purposes of the Real F 0 by the person(s) named below 1 pursuant to the power of attorn	who signed

Signature of witness: Mame of witness: Address of witness: Telephone Number of the Witness: 02 8754 4771

Musurec

Attorney's name: Signing on behalf of: Power of attorney-Book: -No.:

Signature of attorney:

Joanne Musumeei Team Leader 4512 39

.

Witness please note: You may be contacted by the Department of Lands to verify the signing.

WARNING! SEVERE PENALTIES MAY BE IMPOSED FOR LODGING A FALSE APPLICATION. All handwriting must be in block capitals.

1

STATUTORY DECLARATION

I **JOANNE MUSUMECI** of 1 Homebush Bay Drive, in the State of NEW SOUTH WALES DO SOLEMNLY AND SINCERELY DECLARE as follows:

- I am a Manager of the Lending Services branch of the National Australia Bank Limited ACN 004 044 937 (the bank).
- 2 The Certificate of 1/999026 & 2/999026 could not be located after a thorough search has been conducted of the security packet, strong rooms and premises in an endeavour to locate the title.
- 3 AA873548 is the Mortgage to National Australia Bank
- 4 The property is not a vacant land.
- 5 The Certificate of Title is not held by any other person or corporation as security for a loan or for any other purposes whatsoever.
- 6 To the best of our knowledge the registered proprietor has never been bankrupt or insolvent, nor assigned his/her estate for the benefit of creditors.

AND I MAKE this solemn declaration conscientiously believing the same to be true and by virtue of the provisions of the Oaths Act, 1900.

DECLARED at Sydney this day of 5TH March 2010.

Before me: Signature of authorised witness ALLEN JOHN BIBLE J.P. No. 108905 Level 5, Building C 1 Homebush Bay Drive Rhodes NSW 2138)) Address of authorised witness Signature of declarant) JUSTICE OF THE PEACE Capacity in which authorised witness) takes the statutory declaration)

2012

& mar 13

		/WARNING: A4 CO	ργ δυρριιθα	DY DPI NOW LOI	Conveyancing Purposes	, only . It defer dy die toden and the tode
³⁴ کر	Form: 01T			, Dångeed		
	Release: 2		((Č	RANSFER Vew South Wales	e cancines santi firmt suist tinnt (111	
	www.lpi.nsw.gov	v.au		al Property Act 1900	<u> </u>	547B
			·····	gally required and will	become part of the public roo	20rd
	STAMP DUTY	Office of State Reven	ie use only			
					NEJ SOUTH WALES OU: 21-04-2004 Section 54(3)	ry 0001753689001
(A)	TORRENS TITLE	Identifiers 1/	999026 and	Identifier 2/999	026	
					AU04.	
(B)	LODGED BY	Delivery Name, A Bonal Australi	ddress or DX a	nd Telephone		CODES
•	B	px 45A Referen	DL	+1)DRC	\sim	TW
(C)	TRANSFEROR			a rea an		(Sheriff)
		NAECOURT AUTO H	SODY PTY, L	IMITED ACN 073 4	11 637	
(D)	CONSIDERATION	The transferor neknowle	does receipt of it	te consideration of \$ 1	,00	
(E)				e transferee an ostate in		and as regards
(F)	SHARE TRANSFERRED	The second s			-	
(G)						
(H)	TRANSFEREE				······································	
		NAECOURT PERFE	CT PAINT PI	Y. LIMITED ACN	ACN 105 318	189
		1				
(1)		TENANCY:	2010-0-18-19-19-19-19-19-19-19-19-19-19-19-19-19-		na manga sa a gina kan kalana wa mana afi na sana wa ya na ya ku 1	
(J)	DATE	21 April 2	204			
	and executed on a authorised person pursuant to the authorised person and the authorised person and the authorized person	for the purposes of the I behalf of the corporation h(s) whose signature(s) a uthority specified. $5 \cdot 12.7$ Cs R P-4	n named below h appear(s) below	by the	1 951 250	· ·
	Signature of auth	orised person:		Signature	of authorised person:	
		ad normany and a	دومه وروه وروه و المرود و المرود و المرود و مرود		uthorised person	
	Name of authoris Office held:	ALL DEFROIT NO. ALL DEFRONT	and an analysis and an	Name of a Office held	: Some Di	LECTOR/SECRET
		THE PERSON AND A COMPANY AND A	alla annuarratum nyanya ya a ya a ya a	Certified f	or the purposes of the Real Pro	/ operty Act
		INTERNET AND	994 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Certified f	or the purposes of the Rea) Pro	operty Act
		INTERNET AND	994 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Certified f	for the purposes of the Real Pro-	/ operty Act
		FOR DEROIT, and the antiter	alik kanademini (1920) (27 - 27 - 27 - 28 - 28 - 28 - 28 - 28 -	Certified f 1900 by th	for the purposes of the Real Pro-	/ operty Act
		THE PERSON AND A COMPANY AND A	alda aanaarraaan -yaxayar oo ya ya ya ya	Office held Certified f 1900 by th Signature Signatory	for the purposes of the Real Pro- le person whose signature appro-	/ pperty Act pars below.
			alik kanaarna am aya ayar ya a () , a a (Office held Certified f 1900 by th Signature Signatory Signatory	for the purposes of the Real Pro- le person whose signature appro-	/ operty Act
	Office held:		1	Office held Certified f 1900 by th Signature Signatory	for the purposes of the Real Pro- le person whose signature appro-	/ pperty Act pars below.
	Office held:	must be in block capital	1	Office held Certified f 1900 by th Signature Signatory Signatory Page 1 of	or the purposes of the Real Pro- te person whose signature appro- s name:	/ pperty Act pars below.

APPENDIX D

CURRENT AND HISTORICAL AERIAL PHOTOGRAPHS

APPENDIX E

NSW EPA RECORDS

You are here: <u>Home</u> > <u>Contaminated land</u> > <u>Record of notices</u>

Search results

Your search for: Suburb: Marrickville

Your search	for: Suburb: Marrickville		
Suburb	Address	Site Name	Notices related to this site
Marrickville	Thornley Street/Wanstead Avenue	Sewer Aqueduct - Cooks River	1 former
Marrickville	22-28 Carrington Road	TRW Marrickville	1 current and 1 former

Page 1 of 1

10 October 2013

.

NSW Environment Protection Authority Feedback Contact Government About Web support Contact us NSW Government Accessibility Public consultation Offices jobs.nsw Disclaimer Report pollution Privacy Copyright

Number	Name	Location	Туре	Status	Issued date
		25 FITZROY STREET, MARRICKVILLE, NSW			
11342	ALFRED JOHNS PTY LTD	2204	POEO licence	No longer in force	15-Feb-01
		25 FITZROY STREET, MARRICKVILLE, NSW			
1034393	ALFRED JOHNS PTY LTD	2204	s.58 Licence Variation	Issued	5-Feb-04
		71-73 RAILWAY PARADE, MARRICKVILLE,			
6525	BIOCLONE AUSTRALIA PTY LTD	NSW 2204	POEO licence	No longer in force	30-May-00
		71-73 RAILWAY PARADE, MARRICKVILLE,			
1018991	BIOCLONE AUSTRALIA PTY LTD	NSW 2204	s.58 Licence Variation	Issued	22-Oct-02
		71-73 RAILWAY PARADE, MARRICKVILLE,			
1048454	BIOCLONE AUSTRALIA PTY LTD	NSW 2204	s.58 Licence Variation	Issued	6-Jun-05
	CHAMPION FORMS AUSTRALIA	1-21 SMITH STREET, MARRICKVILLE, NSW			
7160	MARRICKVILLE PTY. LTD.	2204	POEO licence	Revoked	11-Jul-00
	CHAMPION FORMS AUSTRALIA	1-21 SMITH STREET, MARRICKVILLE, NSW			
1011517	MARRICKVILLE PTY. LTD.	2204	s.79 Revocation of a Licence	Issued	25-Oct-01
		122 EDINBURGH ROAD, MARRICKVILLE,			
6530	GLOBUS GROUP PTY LTD	NSW 2204	POEO licence	Surrendered	28-Apr-00
		122 EDINBURGH ROAD, MARRICKVILLE,			
1044204	GLOBUS GROUP PTY LTD	NSW 2204	s.58 Licence Variation	Issued	3-Feb-05
		523A ILLAWARRA ROAD, MARRICKVILLE,			
6477	MARRICKVILLE METALS PTY. LTD.	NSW 2204	POEO licence	Surrendered	15-May-00
		42 Sydneham Road, MARRICKVILLE, NSW			
11335	NETWORK GRAPHICS PTY. LTD.	2204	POEO licence	Surrendered	31-Jan-01
		42 Sydneham Road, MARRICKVILLE, NSW			
1035149	NETWORK GRAPHICS PTY. LTD.	2204	s.58 Licence Variation	Issued	5-Mar-04
		74 EDINBURGH ROAD, MARRICKVILLE, NSW			
1269	PEERLESS HOLDINGS PTY. LIMITED	2204	POEO licence	Surrendered	15-May-00
		74 EDINBURGH ROAD, MARRICKVILLE, NSW			
1022998	PEERLESS HOLDINGS PTY. LIMITED	2204	s.58 Licence Variation	Issued	9-Apr-03
		74 EDINBURGH ROAD, MARRICKVILLE, NSW			
1052143	PEERLESS HOLDINGS PTY. LIMITED	2204	s.58 Licence Variation	Issued	20-Oct-05
		8 BROMPTON ST, MARRICKVILLE, NSW			
6844	POROUS HARDCHROME PLATING PTY LTD	2204	POEO licence	Surrendered	30-Nov-00
	TRISTAR STEERING AND SUSPENSION	20-28 CARRINGTON ROAD, MARRICKVILLE,			
1997	AUSTRALIA LIMITED	NSW 2204	POEO licence	Surrendered	7-Aug-00
	TRISTAR STEERING AND SUSPENSION	20-28 CARRINGTON ROAD, MARRICKVILLE,			
1019301	AUSTRALIA LIMITED	NSW 2204	s.58 Licence Variation	Issued	13-Aug-02
	TRISTAR STEERING AND SUSPENSION	20-28 CARRINGTON ROAD, MARRICKVILLE,			
1024149	AUSTRALIA LIMITED	NSW 2204	s.58 Licence Variation	Issued	10-Feb-03
	TRISTAR STEERING AND SUSPENSION	20-28 CARRINGTON ROAD, MARRICKVILLE,			
1054033	AUSTRALIA LIMITED	NSW 2204	s.58 Licence Variation	Issued	20-Jan-06
6738	VEMADELL PTY. LIMITED	58 MEEKS ROAD, MARRICKVILLE, NSW 2204	POEO licence	No longer in force	8-Nov-00
1046358	VEMADELL PTY. LIMITED	58 MEEKS ROAD, MARRICKVILLE, NSW 2204	s.58 Licence Variation	Issued	11-Apr-05

APPENDIX F

NSW WORKCOVER SEARCH RECORDS

Licence No. 35/032374

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/032374 to 11/12/2003. I confirm that all the licence details shown below are correct (amend if necessary).

(Signature) for: DREW AUSTRALIA P/L

NINIER DEDERN (Please print name) 4 · /2 · 02 (Date signed)

THIS SIGNED DECLARATION SHOULD BE RETURNED TO: (please do not fax) WorkCover New South Wales Enquiries: ph (02) 9370 5187 Dangerous Goods Licensing Section fax (02) 9370 6104 GPO BOX 5364 SYDNEY 2001 Details of licence on 30 November 2002 Licence Number 35/032374 Expiry Date 11/12/2002

Licensee DREW AUSTRALIA P/L ACN 001 584 523

Postal Address: BOX 383 P O MARRICKVILLE NSW 2204

Licensee Contact DIDIER DEJEAN Ph. 02 9517 1600 Fax. 02 9519 8346

Premises Licensed to Keep Dangerous Goods DREW AUSTRALIA P/L 18-26 FAVERSHAM ST MARRICKVILLE 2204

Nature of Site CHEMICAL PRODUCT MANUFACTURING N.E.C.

Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site DIDIER DEJEAN(0425 254 069) Ph. 02 9517 1600

Site staffing 9 HRS 5 DAYS

Details of Depots

Depot No.	Depot Type	Goods	s Stored in Depot	Qty
1	FLAMMABLE L	QUIDS CABINET	Class 3	850 L
	UN 1193 I	ETHYL METHYL KETO	ONE (METHYL ETHYL KETONE)	350 L
	UN 1268 I	PETROLEUM PRODU	CTS, N.O.S.	50 L-
		MORPHOLINE		150 L-
		CYCLOHEXYLAMINE	100 L~	
	UN 2686 2	200 L~		
3 A	ROOFED STOR	Έ	Class 3	8000 KG
	UN 1760 (CORROSIVE LIQUID,	N.O.S.	4500 KG-
	UN 1791 I	HYPOCHLORITE SOL	UTION	500 KG
	UN 1824 S	SODIUM HYDROXIDE	SOLUTION	3000 KG
3B	ROOFED STOR		Class 3	7 0 00 KG
		CORROSIVE LIQUID,		3800 KG
		HYDROCHLORIC ACI	D	2000 KG
		SULFAMIC ACID		1200 KG
4 A	ROOFED STOR		Class 5.1	2500 KG
	UN 1477 N	NITRATES, INORGAN	NC, N.O.S.	500 KG 🦟

Licence No. 35/032374

.

Æ.

*

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

IS	SUED UNDER AND SUBJECT TO THE PROV	/ISIONS OF THE DANGEROUS GOODS ACT, 1975	AND REGULATION THEREUNDER
	UN 1479 OXIDIZING		1000 KG –
	UN 1498 SODIUM NIT		1000 KG-
	UN 1500 SODIUM NIT	FRITE	1000 KG-
4B	ROOFED STORE	Class 5.1	300 L
	UN 2014 HYDROGEN	PEROXIDE, AQUEOUS SOLUTION	300 L
5	ROOFED STORE	Class 8	10000 L
	UN 1760 CORROSIVE	E LIQUID, N.O.S.	10000 L
6	ROOFED STORE	Class 8	10000 L
	UN 1719 CAUSTIC AL	KALI LIQUID, N.O.S.	1000 L

Application for Licence to keep Dangerous coocs WorkCover New South Wales
Application for Dinew licence Diamendment Ditransfer Direnewal of expired licence
PART A - Applicant and site informationSee page 2 of Guidance Notes1Name of applicantACN1Name of applicantG7 001 584 5232Postal address of applicantSuburb/TownPostcode2Postal address of applicantMARRICKVILLE14.75
3 Trading name or site occupier's name 3 Trading name or site occupier's name AS ABOVE 4 Contact for licence inquiries Phone Fax Name 95171600 95198346
5 Previous licence number (if known) 35/ C32374 6 Previous occupier (if known)
Suburb/Town Mauricky.ile NSW 2204.
8 Main business of site Chemical Product Manufacturing N.E.C. 9 Site staffing: Hours per day 9 Days per week 5 10 Site emergency contact Phone: Name 04-25254069/95171600 DidiER DEJEAN
11 Major supplier of dangerous goods Variant 12 If a new site or for amendments to depots - see page 4 of Guidance Notes. Plan stamped by: Name of Accredited Consultant Date stamped Roland CHVKCHES ChenCARE 19-4-02
I certify that the details in this application (including any accompanying computer disk) are correct and cover all licensable quantities of dangerous goods kept on the premises. 13 Signature of applicant Printed name Date Date Date Date Date Date Date Dat

Form DG10

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER **UN 1789 HYDROCHLORIC ACID** 100 L UN 2967 SULFAMIC ACID 700 KG 4 **EXEMPT - STORAGE AREA** Class 5.1 500 KG UN 1477 NITRATES, INORGANIC, N.O.S. 200 Kg 200 KG UN 1479 OXIDIZING SOLID, N.O.S. 100 KG UN 3087 OXIDIZING SOLID, TOXIC, N.O.S. 200 KG 5 **ROOFED STORE** Class 8 10000 L UN 1719 CAUSTIC ALKALI LIQUID, N.O.S. 5000 L 6 **ROOFED STORE** Class 8 10000 L UN 1750 CORROSIVE LIQUID, N.O.S. 1/ 5000 L

Depet 6 contains the alkali liquids

Form DG10

2

Application for Licence to Keep Dangerous Goods

Exp date 1	2/12/96 not	in te	- conditional	- A - T/
PART A - Applic	ant and site info	rmation	App gle stic	us violende C/0
1 Name of applicant			ACN JEAN W	whatted by 281,
DREW AUSTI	RALIA Pty Ltd		007 584	523 sensore will on
2 Postal address of ap		St	uburb/Town	Postcode
P.O. Box 383	<u>, Marsah Panis</u>	/	Mannekville	2204
3 Trading name or site	occupier's name			
-DREW AUSTR	RALIA Ptyltd.		51942,931-25535	
4 Contact for licence in Phone	Fax	Name		
(02) 95171600	(02)95198346	Dicher 1	Pejean RE	CEIVED
5 Previous licence num	nber (if known) 35/ 🔿	2374		12 DEC 1996
6 Previous occupier (if	known)	<u>na zonazzon ingenie</u> kan	SCIEN	TIFIC SERVICES
7 Site to be licensed No	Street			BRANCH
18-26	FAVERSHAM S	<u>الم الم الم الم الم الم الم الم الم الم </u>	Licenc	e lest
Suburb / Town			Postcode 20	18.98 A
MARRICKUILLE	<u>n an chuir, an bhail a bhail</u> I		2204.	
· ' 같은 한국 것 같아요' 같은 물건을 가지 않는 것이 같아.	1 Fle N A R	and ready AA a	lacturing, d	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 Main business of site Site staffing: Hours p Emergency contact Phone 		Days per week	5	2549
9 Site staffing: Hours p 10 Emergency contact	er day	C Days per week	5	2549
9 Site staffing: Hours p 10 Emergency contact Phone (02) 9517-160	eer day	Days per week Name Didier Déje	5	2549
9 Site staffing: Hours p 10 Emergency contact Phone (02) 9517-160 11 Major supplier of dan	ngerous goods	C Days per week Name	5	2549
9 Site staffing: Hours p 10 Emergency contact Phone (02) 9517-160	ngerous goods	Days per week Name Didier Dèje	5	2549
 9 Site staffing: Hours p 10 Emergency contact Phone (02) 9517-160 11 Major supplier of dan 12 If a new site or for an 	ngerous goods Vand nendments to depots Name of Accredited Cor	Days per week Name Didier Déje Cous	290 Date stamped	2549
 9 Site staffing: Hours p 10 Emergency contact Phone (02) 9517-160 11 Major supplier of dan 12 If a new site or for an Plan stamped by: 	eer day ۹ ngerous goods Vand nendments to depots Name of Accredited Cor Victoric Sedusick	Days per week	Date stamped	2549
 9 Site staffing: Hours p 10 Emergency contact Phone (02) 9517-160 11 Major supplier of dan 12 If a new site or for an Plan stamped by: certify that the details in 	eer day ק mer day (mer day f mer d mer d	Days per week	Date stamped Clo 1019196 computer disk) are corre	2879
 9 Site staffing: Hours p 10 Emergency contact Phone (02) 9517-160 11 Major supplier of dan 12 If a new site or for an Plan stamped by: certify that the details in icensable quantities of data 	eer day ק mer day (mer day f mer d mer d	Days per week	Date stamped	2849
 9 Site staffing: Hours p 10 Emergency contact Phone (02) 9517-160 11 Major supplier of dan 12 If a new site or for an Plan stamped by: certify that the details in icensable quantities of data 	eer day ק mer day (mer day f mer d mer d	Days per week	Date stamped Clo 1019196 computer disk) are corre Date	2849

	Dangerous Goods ave more depots than the						st.
70	add						
Depot Number	Type of depot			Depot Class		aximum le capacity	
121	Indoor Cabine	t		3	850	1	L
UN Number	Correct Shipping Name	Class	⊱PG (I, II, III		duct or on name	Typical quantity	Unit, e.g. L, kg, m ^a
1193	Ethyl Methyl Ketone	3.1	11	Methylet	hyl ketore	200	L
1219	Isopropy 1 alcohol	3	4	Bopropyl		100	d
2054	Morpholine	3.2 (6-1)	11	Morpha		150	l
/1268	Solvesso	3	111	Petroleu Dish'ilal		100	l
2686	Diethylethanolamine	3.1	111	Diethyeth	o-nola-mine	200	l
2357	Cylahexylamine	8/3	11(Gyclohexyl		100	2
				4 4	1		

Depot Number	Type of depot		Depot Class	stor	Maximum age capacity	
UN Number	Correct Shipping Name	PG Class (I, II, III)	Produ Commor		Typical quantity	Unit, e. L, kg, r
				,		
<u></u>						

-> pho

PART C – Dangerous Goods Storage Complete one section per depot.

If you have more depots than the space provided, photocopy sufficient sheets first.

Jelium .	Roofed Store	8	7000 L	r pe
UN Number	P(Correct Shipping Name Class (I, II,			/pical Unit, e.g. antity L, kg, m ³
1824	Sodium hydroxido B	Claust	ic Solution 7c	xxx,
Depot Number	Type of depot	Depot	Maximun storage capa	n
5	Roofed store	8	10,000 \$	2
UN Number	P(Correct Shipping Name Class (I, II,			pical Unit, e.g. antity L, kg, m ³
1760	Corrosive liquid Nos & III (Acid)	11010	t Moducts,	ad l
Depot Number	Type of depot	Depot Class	Maximum storage capa	New York Street Street Street Street
, 6	Roofed store	ß	10,000 L	D.
UN Number	PG Correct Shipping Name Class (I, II,			pical Unit, e.g. antity L, kg, m³
1760	Corrosive liqued NOS. 85 111		formulated, soc	o L
	(aittaine)	Chrisen Weatmen	ubler t products	
Depot Number	Type of depot	Depot Class	Maximum storage capa	
UN Number	PG Correct Shipping Name Class (I, II, I		duct or Typ Ion name qua	pical Unit, e.g. ntity L, kg, m³

Pero Pero

PART C - Dangerous Goods Storage Complete one section per depot.

If you have more depots than the space provided, photocopy sufficient sheets first.

	Depot Number	Type of depot			Depot Class		iximum e capacity	
$\sqrt{2}$	× 4	Raofed Stared	ige a	req	5.1	5001	Sq .	
	ÜN Number	Correct Shipping Name	Class	PG (İ, II, III		duct:or ion name	Typical quantity	Unit, e.g L, kg, m
	1479	Biosperse 261T	5.1	1)	halograi	ted hydastar	n 100	kq
\mathcal{A}	/3087	Sodium Dichromate	5.1	1)	N N	Dictromate	60	Kg
J	1486	Potansium Nitrate	5.1	11)	Potansium	Nitrate	90	Kg
	194-2	Ammonium Nitrate	5.1	111	ammoni	IM Nitralo	20	Kg-
No.	/1477	Coppes Nitrate	5.1	111	Copper 1	Vitrate	20	Kg
								4

Depot Number	Type of depot		Depot Class	Maximum storage capacity	
UN Number	Correct Shipping Name	PG Class (I, II, III)	Product or common nar	Typical ne quantity	Unit, e L, kg,
	*				
r					

PART C - Dangerous Goods Storage Complete one section per depot.

If you have more depots than the space provided, photocopy sufficient sheets first.

Dep Num	bot iber	Туре	of depot			Depot Class	stora	aximum; ge capacity.		
A 3	A	Rasfed s	torect.			8 Alko	uve. 200	WL + 10	cokq]	L
Ul		Correct Shipping	g Name	Class	. PG (I, II, III	Pro comr	oduct or	Typical	Unit, e.g. L, kg, m³	
18	23	Sodium hyd	02100	હ	144	sodiumt	12.5%	1000	Ka	
170	71	hypochlorite	5012	B	111	Sodium	hydrochloite	100	1	
171		Cobratec		Ð	81	Tolymat	izole	400		
						·			• • • •	
		*								
						<u>, , , , , , , , , , , , , , , , , , , </u>				
L	72000		V		- 174 Jay 1	7				

- Pin

- Dangerous Goods Storage Complete one section per depot.

I have more depots than the space provided, photocopy sufficient sheets first.

	vepot tumber	Liype of depo	Ċ.		Depot - Carlos - Carl	laximum, 96 ceapialeity		
	3B	Roofed shored		<u></u>	Acid	ol.	<u> </u>	1 o
	UN Ņumber	Correct Shipping Name	a Class	. PG (1,11,1	Product or II) common name	Typical squantity	Unit, e.g	
]	1760	Aquar 54-2	3	11(Ciluteraldenydo a Quat. Amm. Compoi	400	L	
	1760	Bayhibit AM	8	111	Phosphone Cauboxylic Acibs	1000	L	
	1760	Belacide 350	8	+ 1(Phosphonium Worudo	500	l	4.250
	1760	Belcene 200/283	9	881-	Hydrolsyd Poly Malei'c Acid - 50%	2000	L	- Frideman
	1760	Kathon wt	8	111	Isothiagoline,	300	e	
	1789	Hydrochlori'e Acid	8	11	hphoellorie Acid.	100	e	
	2967	Sufamic Acid	8	111	Suffamir Acid.	100	Kq.	
	47							
: :								
-								
				18-3i				

UNDERGROUND SERVICES PLANS

Job No 6674969

Mobile:

Email:

Caller Id: 1179045

Not Supplied

lubos@aargus.net

Phone: 0295886159

0295886179

Fax:

Caller Details

Contact:	Mr Lubos Melicharek	
Company:	Aargus Pty Ltd 446 Parramatta Rd	
Address:		
	PETERSHAM NSW 2049	

Dig Site and Enquiry Details

WARNING: The map below only displays the location of the proposed dig site and does not display any asset owners' pipe or cables. The area highlighted has been used only to identify the participating asset owners, who will send information to you directly.

User Reference:	Site 2 - DaniasFamily Marrickville			
Working on Behalf of:				
Private				
Enquiry Date:	Start Date:	End Date:		
06/09/2013	13/09/2013	16/09/2013		
Address:				
Chalder Av				
Marrickville NSW 2204				
Job Purpose:	Excavation			
Onsite Activity:	Vertical Boring			
Location of Workplace:	Private Property			
Location in Road:	Not Supplied			
 Check that the location of the dig site is correct. If not you must submit a new enquiry. Should the scope of works change, or plan validity dates expire, you must submit a new enquiry. Do NOT dig without plans. Safe excavation is your responsibility. 				

 Do NOT dig without plans. Safe excavation is your responsibility. If you do not understand the plans or how to proceed safely, please contact the relevant asset owners.

Notes/Description of Works:

Site 2 - Victoria Rd Corridor, Marrickville

Your Responsibilities and Duty of Care

- If plans are not received within 2 working days, contact the asset owners directly & quote their Sequence No.
- ALWAYS perform an onsite inspection for the presence of assets. Should you require an onsite location, contact the asset owners directly. Please remember, plans do not detail the exact location of assets.
- Pothole to establish the exact location of all underground assets using a hand shovel, before using heavy machinery.
- Ensure you adhere to any State legislative requirements regarding Duty of Care and safe digging requirements.
- If you damage an underground asset you MUST advise the asset owner immediately.
- By using this service, you agree to Privacy Policy and the terms and disclaimers set out at www.1100.com.au
- For more information on safe excavation practices, visit www.1100.com.au

Asset Owner Details

The assets owners listed below have been requested to contact you with information about their asset locations within 2 working days. Additional time should be allowed for information issued by post. It is **your responsibility** to identify the presence of any underground assets in and around your proposed dig site. Please be aware, that not all asset owners are registered with the Dial Before You Dig service,

so it is **your responsibility** to identify and contact any asset owners not listed here directly.

- ** Asset owners highlighted by asterisks ** require that you visit their offices to collect plans.
- # Asset owners highlighted with a hash require that you call them to discuss your enquiry or to obtain plans.

Seq. No.	Authority Name	Phone	Status
30538975	Ausgrid (formerly EnergyAustralia)	0249510899	NOTIFIED
30538978	Jemena Gas South	1300880906	NOTIFIED
30538973	Marrickville Council	0293352000	NOTIFIED
30538977	Optus and/or Uecomm, Nsw	1800505777	NOTIFIED
30538974	RailCorp Central	0297528204	NOTIFIED
30538979	Sydney Water	132092	NOTIFIED
30538976	Telstra NSW, Central	1800653935	NOTIFIED

END OF UTILITIES LIST

Drainage OVERVIEW MAP Sequence Number: 30538973 Address: Chalder Av. Marrickville, NSW. 2204

Drainage Map 2 of 2 Sequence Number: 30538973 Idress: Chalder Av, Marrickville, NSW, 2204

	email - Telstra.Plans@team.telstra.com For urgent onsite contact only - ph 1800 653 935 (bus hrs)	Sequence Number: 30538976	
For u		CAUTION: Fibre optic and/ or major network present in plot area. Please read the Duty of Care and	
TELSTRA CORPO			
Generate		 contact Telstra Plan Services should you require any assistance. 	

The above plan must be viewed in conjunction with the Mains Cable Plan on the following page

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

WARNING: This document is confidential and may also be privileged. Confidentiality nor privilege is not waived or destroyed by virtue of it being transmitted to an incorrect addressee. Unauthorised use of the contents is therefore strictly prohibited. Any information contained in this document that has been extracted from our records is believed to be accurate, but no responsibility is assumed for any error or omission. Optus Plans and information supplied are valid for 30 days from the date of issue. If this timeline has elapsed please raise a new enquiry.

Sequence Number: 30538977

'yes' Optus For all Optus DBYD plan enquiries – Email: <u>Fibre.Locations@optus.net.au</u> For urgent onsite assistance contact 1800 505 777 Optus Limited ACN 052 833 208 Date Generated: 06/09/2013

1 Property Lines

"property line" (PL), sometimes referred to as "building line" (BL), is the standard dimensioning reference point on all Ausgrid plans and represents property boundaries.

Typically the PL is the boundary between private property and local council's footpath area or nature reserve. Most residential fences and office blocks are erected along the PL.

"kerb line" (KL) is less frequently referred to on Ausgrid plans, and where used will be identified clearly as KL.

Numbers listed within property boundaries should correspond to recognised "street numbers". (refer to figure 1)

2 Datum References

"datum references" identify distances (in metres) from significant features (such as corners of property boundaries) to reference points such as Ausgrid assets (eg: "conduits", "cables", "joints"). (refer to figure 2)

3 Cross Sections

"cross sections" displayed on Ausgrid plans detail information relating to the relative position (ie: distance from the "property line", and the depth of "cover") of Ausgrid assets.

"cover" is a term used to refer to the depth of cables underground.

A "cross section" leader line will be drawn indicating the location of the displayed **"cable"** or **"conduit"** information on Ausgrid plans.

The distance from **"property line"** (in metres) and depth of **"cover"** (in metres) references are displayed as; ie: 0.6 metres from PL and 0.5 metres underground).

Where distance and cover are not recorded, they will be clearly marked as "NR".

NOTE: Distance and cover where indicated may be different to the actual position of the cables (eg: fill may have been placed at site that has changed the ground level).

"PL" distance shown in cross sections is an indicative measure to the centre of the trench allocation from the adjacent property line.

On some plans the "cross sections" may also be shown with a specific number (eg: FC1). This number will have an arrow pointing in the direction you will need to look for the cross-section detail. (refer to figures 3 and 4)

Figure 4

4 Cable Joints and Joint Reports

"cable joints" (numbered individually) and "joint reports" (attached to Ausgrid plans) can provide information relating to the relative position of Ausgrid assets, distance from the "property line" (in metres), and the depth of "cover" (in metres). (refer to figures 5 and 6)

Figure 5

5 Cross Section Detail Boxes

"cross section" *detail boxes* on the sides of an Ausgrid plan are used when there is insufficient room to display "cable" and/or "conduit" information on the Ausgrid plan.

Ausgrid plans (refer to figure 7) are bordered by numeric identifiers along the *top and bottom borders* and alpha identifiers along the *side borders*.

A **"cross section"** *leader line* and annotation is drawn on the Ausgrid plan for a reference to **"cable"** and/or **"conduit"** information in the **"cross section"** *detail boxes.*

6 Pits

Underground **"pits"** are numbered on Ausgrid plans, positioned relative to the **"property line"** (PL), and can be found on either the footpath (nature strip) or the road (see figure 8).

Proposal Areas

7

There are areas where underground work may have been issued for construction by Ausgrid, but details are not yet completely displayed on Ausgrid plans. In such cases a shaded **"proposal area"** is displayed on the Ausgrid plan, indicating underground work may have commenced in the vicinity but is not yet complete.

In some instances cables and other assets within the shaded **"proposal area"** will be shown in a **bright magenta** colour, indicating that the proposed new work displayed within the shaded area is based on initial planning documentation. (refer to figure 9)

In other instances the shaded **"proposal area"** itself may be shown as a **blue** colour, indicating that the new work displayed within the shaded area on the Ausgrid plan is yet to include details regarding final depths and dimensioning. (refer to figure 10)

Figure 10

NOTE: In cases where these shaded **"proposal areas"** are displayed on Ausgrid plans.

"Ausgrid's design plans showing the proposed position of its underground cables, overhead lines and structures have been prepared solely for Ausgrid's own planning use. They show the proposed position of such underground cables, overhead lines and structures as proposed at the time of planning and have not necessarily been corrected to take into account any changes to road widths, road levels, fences and buildings subsequent to proposed installation.

Actual installations may vary from proposed installations as it may be necessary to take account of unforeseen above ground or subterranean constructions. Therefore, Ausgrid does not hold out that the design plans show more than the proposed presence or absence of its underground cables, overhead lines and structures in the street and will accept no liability for inaccuracies in the information shown on such design plans from any cause whatsoever."

Any further information regarding information displayed for **"proposal areas"** can be obtained by contacting the Ausgrid DBYD office at the number indicated on the response to your DBYD enquiry for further information.

8 Ausgrid (ISG) Map Grid

The pale grey line indicates the **1:1000 Ausgrid (ISG) map grid** *border*.

The pale grey annotation located in the corners of the Ausgrid plan window, indicates the 1:1000 Ausgrid (ISG) map grid reference.

The **1:1000 Ausgrid (ISG) map grid** *border and reference* on Ausgrid plans should be used when reading the **"joint report"** (see part 4 of this document for more detail) to accurately locate underground cables.

The buffer area shown on the plan should relate to the area requested on the original Dial Before you Dig request.

The **grid index box** can be used for reference where necessary (located in the bottom right corner of the Ausgrid plans), and will also indicate the buffer area shown on the plan.

9 Ausgrid "Distribution" and "Transmission" Plans

The Ausgrid plans supplied may identify both **"distribution"** and **"transmission"** voltage assets for the area defined in the DBYD request. (refer to figure 11)

Figure 11

In the Sydney region, the Ausgrid plans are separately labelled as **"Distribution – nnnnnnn"** and **"Transmission – nnnnnnn"**, where "nnnnnn" refers to the DBYD sequence number quoted.

In the Hunter region, the Ausgrid plans show combined **"distribution"** and **"transmission"** voltage assets, and are clearly labelled as **"Distr + Trans – nnnnnn"** where "nnnnnn" refers to the DBYD sequence number.

In the Hunter region, some DBYD requests are covered by PENGUIN grid references. In such cases, the Ausgrid Plans show the grid quoted with a cross-reference to a corresponding Ausgrid (ISG) map grid (eg: PENGUIN 136B3 – DP711, where DP711 is the Ausgrid (ISG) grid) to optimise the legibility of plans due to PENGUIN grid scale.

Some Hunter plans may have transmission cables in the area, when these cables are present there will be a warning printed at the top of the plan supplied:

WARNING: If there is work in the vicinity of transmission cables, Ausgrid must be contacted at least two weeks before the work is due to commence.

10 "Shifting Land Base" on Ausgrid Distribution and Transmission Plans

In some instances, the plans supplied may indicate road or property outlines that appear to have shifted in relation to the Ausgrid assets displayed. (refer to figure 12)

Figure 12

In such instances, always refer to the **"property line"** (in metres) and depth of **"cover"** (in metres) references displayed on the nearest relevant **"cross sections"** to obtain Ausgrid asset location information (see Reading Ausgrid Plans, clause 3, Cross Sections for more detail).

11 "Underground Earthing Infrastructure"

In some instances, the plans supplied may also indicate the presence of underground earthing infrastructure associated with underground and/or overhead Ausgrid assets.

The "Earth Point" symbol (refer to figure 13) will be shown on plans to minimize risk of disturbance or damage to any Ausgrid underground earthing infrastructure in the vicinity.

Figure 13

Network Operations- Asset Analysis Unit 9, 677 Springvale Road Mulgrave, Victoria, 3178

Date: 06/09/2013 To: Mr Lubos Melicharek Company: Address: 446 Parramatta Rd Petersham, NSW 2049

ENQUIRY DETAILS

Location:Chalder Av, Marrickville, NSW 2204Sequence No.:30538977DBYD Reference:6674969

In relation to your enquiry of the above address, Optus advises as follows:

The records of Optus disclose that there ARE underground FIBRE OPTIC TELECOMMUNICATIONS cables in the vicinity of the above enquiry as per the attached plan(s). This reply is valid for a period of 30 days from the date above.

IMPORTANT INFORMATION

Drawings and Plans provided by Optus are reference diagrams which were correct at the time the asset was built. Exact ground cover and alignments cannot be provided with any certainty as these may alter over time. Depths of Telecommunications plant vary considerably as do alignments. It is essential to uncover the asset and positively identify the assets exact location.

Optus plans are provided as a guide only and the completeness of the information cannot be guaranteed.

"DUTY OF CARE"

When working in the vicinity of Telecommunications plant you have a legal "Duty of Care" that must be observed.

It is the responsibility of the owner and any consultant engaged by the owner, including an architect, consulting engineer, developer and head contractor to design for minimal impact to Optus plant. Optus will provide assistance at this design stage through the provision of plans and sketches or consultation.

It is the owner's (or constructor's) responsibility to:-

- a) Request plans of Optus plant for a particular location at a reasonable time before construction begins. If you have doubts about the presence of Optus assets we strongly recommend that you engage an Optus Accredited plant locator.
- b) Visually locate Optus plant by hand digging or using non-destructive water jet method where construction activities may damage or interfere with Optus plant
- c) Contact Optus Network Operations Asset Analyst (details below) if Optus plant is wholly or partly located near construction activities
CRIMINAL CODE ACT 1995

The following is an extract from the Criminal Code Act 1995 and is applicable to Optus plant

Chapter 10 National infrastructure

Part 10.6 Telecommunications Services

Division 474 Telecommunications offences

Sect 474.6 Interference with facilities

- 1) A person is guilty of an offence if the person tampers with, or interferes with, a facility owned or operated by:
 - (a) a carrier; or
 - (b) a carriage service provider; or
 - (c) a nominated carrier.

Penalty: Imprisonment for 1 year.

- 2) For the purposes of an offence against subsection (1), absolute liability applies to the physical element of circumstance of the offence, that the facility is owned or operated by a carrier, a carriage service provider or a nominated carrier.
- 3) A person is guilty of an offence if:
 - (a) the person tampers with, or interferes with, a facility owned or operated by:
 - i.a carrier; or

ii.a carriage service provider; or

- iii.a nominated carrier; and
- (b) this conduct results in hindering the normal operation of a carriage service supplied by a carriage service provider.

Penalty: Imprisonment for 2 years.

- 4) For the purposes of an offence against subsection (3), absolute liability applies to the following physical elements of circumstance of the offence:
 - (a) that the facility is owned or operated by a carrier, a carriage service provider or a nominated carrier;
 - (b) that the carriage service is supplied by a carriage service provider.
- 5) A person is guilty of an offence if:
 - (a) the person uses or operates any apparatus or device (whether or not it is comprised in, connected to or used in connection with a telecommunications network); and
 - (b) this conduct results in hindering the normal operation of a carriage service supplied by a carriage service provider.

Penalty: Imprisonment for 2 years.

DAMAGE

ANY DAMAGE TO OPTUS NETWORK MUST BE REPORTED TO 1800 500 253 IMMEDIATELY

The owner is responsible for all plant damage when works commence prior to obtaining Optus Drawings, or failure to follow instructions.

Optus reserves the right to recover compensation for loss or damage to its cable network and other property including consequential loss

ASSET RELOCATIONS

You are not permitted to relocate or alter any Optus assets or network under any circumstance.

For all enquiries relating to the relocation of Optus assets please email Fibre.Locations@optus.net.au

ESSENTIAL PRECAUTIONS AND APPROACH DISTANCES

Note: If the following clearances cannot be maintained, please contact Optus Network Operations Asset Analysis Team for advice on how to resolve the situation.

1. On receipt of plans and before commencing excavation work or similar activities near Optus plant, carefully locate the plant first to avoid damage. Engage an Optus accredited locator to undertake exposure of the Optus plant when working within the following approach distances.

Where Optus plant is in an area where road and footpaths are well defined by kerbs or other features a minimum clear distance of 1.0m must be maintained from where it could be reasonably presumed that plant would reside.

In non established or unformed reserves this distance must be at least 3 metres.

In country or rural areas which may have wider variations in reasonably presumed plant presence, the following minimum approach distance applies:

a) Parallel to plant: 5 metres

Note: Indicated depths may vary significantly and pot-holing needs to be undertaken within extreme care, commonsense and using techniques least likely to damage cables. Potholing is only to be undertaken by an Optus accredited plant location contractor.

If construction work is parallel to Optus plant, then carful hand digging or using non destructive water jet method (pot holing) at least every 5m is required to establish the location of the plant, confirming the location of the plant prior to work commencing.

Under no circumstances is crossing of Optus plant to be performed without first exposing the Optus plant and having an Optus representative present onsite.

Jackhammers / Pneumatic Breakers	Not within 1.0m of actual location
Vibrating Plate or Wacker Packer Compactor	Not within 0.5m of actual location
	300mm compact clearance before compactor can be used across Optus ducts
	750mm compact clearance cover before compactor can be used across Optus <i>Direct Buried</i> cable
Boring Equipment	Not within 5.0m of actual location without Optus representative onsite
(in-line, horizontal and vertical)	Constructor to hand dig or non-destructive water jet method (pot holing) and expose the Optus plant
	Not to cross the Optus plant without first exposing the plant at the crossing point and without Optus representative onsite
Heavy vehicle Traffic (over 3 tonnes)	Not to be driven across Optus ducts or plant with less than 600mm of cover
	Depth to be verified via hand digging
Mechanical Excavators, Farm ploughing, Boring, Tree removal, fencing	Not within 1.0m of actual location
	Constructor to hand dig or use non-destructive water jet method (pot holing) and expose plant
Mechanical Excavators, Farm ploughing, Boring, Tree removal, fencing	Depth to be verified via hand digging Not within 1.0m of actual location Constructor to hand dig or use non-destructive water je

2. Maintain the following minimum clearance between construction activity and the actual location of Optus plant.

All Optus pits and manholes should be a minimum of 1.0m in from the back of kerb or within 15m of street intersection after the completion of your work.

All Optus conduit should have the following minimum depth of cover after the completion of your work:-

- Footway 600mm
- Roadway 1000mm at drain invert and at road centre crown

In cases where it is considered that these clearances cannot be maintained at the completion of works advice is to be sought form the Optus Damages and Relocations Team

FURTHER ASSISTANCE

Assistance can be obtained by contacting Optus Network Operations Asset Analysis on **1800 505 777**

Where an on-site location is provided, the owner is responsible for all costs associated with hand digging or use of non-destructive water jet method (pot holing) to visually locate and expose Optus plant.

If plant location drawings or visual location of Optus plant by digging reveals that the location of Optus plant is situated wholly or partly where the owner plans to work, then Optus Damages and Relocates Team must be contacted through Optus Network Operations Asset Locations to discuss possible engineering solutions.

PRIVATE RESIDENTIAL LANDOWNERS and RURAL LANDOWNERS

Where Optus owned cable crosses private residential property or agricultural land, Optus may provide a once off free onsite electronic cable location. Optus Network Operations Asset Analyst will provide assistance in determining whether a free on-site location is required.

Please note:

- The exact location, including depth of cables can only be verified by pot holing which is not covered under this service
- This service is only available to assist private residential land owners and rural land owners
- The service covers one hour onsite only. Additional time will be charged at the current nominal rate.

OPTUS ENGINEERING DRAWING SYMBOLS

Response Cover Letter

Marrickville Council

2 - 14 Fisher St Petersham NSW 2049 Phone: (02) 9335 2222 Fax: (02) 9335 2029

To:

Mr Lubos Melicharek (Customer ID: 1179045) Aargus Pty Ltd 446 Parramatta Rd Petersham, NSW 2049 Email: lubos@aargus.net Phone: 0295886159 Fax: 0295886179 Mobile: Not Supplied

Dear Mr Lubos Melicharek,

The following is our response to your Dial Before You Dig enquiry.

Assets Affected: Drainage

Sequence No:	30538973
Location:	Chalder Av
	Marrickville, NSW 2204
Commencement Date:	13/09/2013 12:00:00 AM

Please have a read over the attached documents for more information about your enquiry.

DISCLAIMER: This map has been prepared from various sources and the publisher and/or contributors accept no responsibility for any injury, loss or damage arising from its use or errors or omissions therein.

WARNING: This plan has been prepared for Council's Purposes only. Council does not guarantee the accuracy of the information shown in this plan. Persons are advised to make their own investigations and site checks to confirm the actual situation on site.

06/09/2013

Guide to reading Sydney Water DBYD Plans

March 2013

Legend

-

Sewer	Property Details
Sewer Main (with flow arrow & size type text)	Boundary Line —
Disused Main	Easement Line
Rising Main	House Number
Maintenance Hole (with upstream depth to invert)	Lot Number
	INFORMATION ELSEWHERE
Maintenance Hole with Overflow	see Guide ref 12345
Ventshalft EDUCT	(work-as-executed diagram available via website)
Ventshaft INDUCT	Bronsond Land
Property Connection Point (with chainage to downstream MH)	Proposed Land Sydney Water Heritage Site
Concrete Encased Section Concrete Encased	(please call 132 092 and ask for the Heritage Unit)
Terminal Maintenance Shaft	Water
Maintenance Shaft	WaterMain - Potable
Rodding Point	(with size type text) 200 PVC Disconnected Main - Potable
Lamphole	Proposed Main - Potable
Vertical	Water Main - Recycled
Pumping Station	Special Supply Conditions - Potable
SP0882	Special Supply Conditions - Recycled
Pressure Sewer	Restrained Joints - Potable
Pressure Sewer Main	Restrained Joints - Recycled
Pump Unit	Hydrant
(Alarm, Electrical Cable, Pump Unit)	Maintenance Hole
Property Valve Boundary Assembly	Stop Valve
Reducer / Taper	Stop Vale with By-pass
Flushing Point	Stop Valve with Tapers
	Closed Stop Valve
	Air Valve
Vacuum Sewer	Valve
Pressure Sewer Main	Scour <u> </u>
Division Valve	Reducer / Taper
Vacuum Chamber	Vertical Bends
Clean Out Point	Reservoir
Stormwater	Recycled Water is shown as per Potable above. Colour as indicated
Stormwater Pipe	Private Mains
Stormwater Channel	Potable Water Main
Stormwater Gully	Recycled Water Main
Stormwater Maintenance Hole	
	Sewer Main
	Symbols for Private Mains shown grey

Work-As-Executed Diagrams

There may be areas where underground assets have been constructed although details are not yet displayed on our plans. To assist our customers, Sydney Water is publishing Work-As-Executed Diagrams for these areas on our website. If a blue shaded area is displayed on your plan from Sydney Water please follow the steps to obtain a diagram:

The term "Work-As-Executed" is used for convenience only and does not constitute a representation regarding the information contained in the diagram. Please refer to the Sydney Water DBYD Important Information document.

Understanding the Works-As-Executed Diagrams

To find out if the information in the Works-As-Executed Diagram refers to Potable Water, Waste Water or Recycled Water assets, look at the lower right corner of the diagram. The diagram number will have a suffix that describes the asset type.

WW	Waste Water
PW	Potable Water
RW	Recycled Water

Proposed Land

In some cases proposed property boundaries (proposed land) are shown for indicative purposes only to provide additional context in Sydney Water DBYD plans.

Easements

Easements are defined as a legal right to use land that is owned by another person. Easements are shown as a broken black line. They are generally shown within land boundaries.

Pipe Types

ABS	Acrylonitrile Butadiene Styrene	AC	Asbestos Cement
BRICK	Brick	СІ	Cast Iron
CICL	Cast Iron Cement Lined	CONC	Concrete
COPPER	Copper	DI	Ductile Iron
DICL	Ductile Iron Cement (mortar) Lined	DIPL	Ductile Iron Polymeric Lined
EW	Earthenware	FIBG	Fibreglass
FL BAR	Forged Locking Bar	GI	Galvanised Iron
GRP	Glass Reinforced Plastics	HDPE	High Density Polyethylene
MS	Mild Steel	MSCL	Mild Steel Cement Lined
PE	Polyethylene	РС	Polymer Concrete
PP	Polypropylene	PVC	Polyvinylchloride
PVC - M	Polyvinylchloride, Modified	PVC - O	Polyvinylchloride, Oriented
PVC - U	Polyvinylchloride, Unplasticised	RC	Reinforced Concrete
RC-PL	Reinforced Concrete Plastics Lined	S	Steel
SCL	Steel Cement (mortar) Lined	SGW	Salt Glazed Ware
SPL	Steel Polymeric Lined	SS	Stainless Steel
STONE	Stone	VC	Vitrified Clay
wi	Wrought Iron	ws	Woodstave

Further Information

Please consult the Dial Before You Dig page on the Sydney Water website (<u>http://www.sydneywater.com.au/SW/plumbing-building-developing/building/dial-before-you-dig-enquiries/</u>) for detailed information regarding:

- Guidelines for building over, and clearance between, mains and assets
- Main depths
- Pipe locator information

For all other enquiries please call the Customer Contact Centre on 132 092

In an emergency, or to notify Sydney Water of damage or threats to its structures, call 13 20 90 (24 hours, 7 days)

IMPORTANT INFORMATION - DIAL BEFORE YOU DIG

Attention: You must read the information below

The material provided or made available to you by Sydney Water (including on the Sydney Water website) in relation to your Dial Before You Dig enquiry (**Information**) is provided on each of the following conditions, which you are taken to have accepted by using the Information:

- 1 The Information has been generated by an automated system based on the area highlighted in the "Locality Indication Only" window on your Caller Confirmation. It is your responsibility to ensure that the dig site is properly defined when submitting your Dial Before You Dig enquiry and, if the Information does not match the dig site, to resubmit your enquiry for the correct dig site.
- 2 Neither Sydney Water nor Dial Before You Dig make any representation or give any guarantee, warranty or undertaking (express or implied) as to the currency, accuracy, completeness, effectiveness or reliability of the Information. The Information, including Sydney Water plans and work-as-executed diagrams, amongst other things:
 - (a) may not show all existing structures, including Sydney Water's pipelines, particularly in relation to newer developments and in relation to structures owned by parties who do not participate in the Dial Before You Dig service;
 - (b) may be out of date and not show changes to surface levels, road alignments, fences, buildings and the like;
 - (c) is approximate only and is therefore not suitable for scaling purposes; and
 - (d) does not show locations of property services (often called house service lines) belonging to or servicing individual customers, which are usually connected to Sydney Water's structures.
- 3 You are responsible for, amongst other things:
 - (a) exposing underground structures, including Sydney Water's pipelines, by pot-holing using hand-held tools or vacuum techniques so as to determine the precise location and extent of structures before any mechanical means of excavation are used;
 - (b) the safe and proper excavation of and for underground works and structures, including having regard to the fact that asbestos cement pipelines, which can pose a risk to health, may form part of Sydney Water's water and sewerage reticulation systems;
 - (c) protecting underground structures, including Sydney Water's pipelines, from damage and interference;
 - (d) maintaining minimum clearances between Sydney Water's structures and structures belonging to others;
 - (e) ensuring that backfilling of excavation work in the vicinity of Sydney Water's structures complies with Sydney Water's standards contained on its website or otherwise communicated to you;
 - (f) notifying Sydney Water immediately of any damage caused or threat of damage to Sydney Water's structures;
 - (g) ensuring that plans are approved by Sydney Water (usually signified by stamping) prior to landscaping or building over or in the vicinity of any Sydney Water structure; and
 - (h) ensuring that the Information is used only for the purposes for which Sydney Water and Dial Before You Dig intended.

- 4 You acknowledge that you use the Information at your own risk. In consideration for the provision of the Dial Before You Dig service and the Information by Sydney Water and Dial Before You Dig, to the fullest extent permitted by law:
 - (a) all conditions and guarantees concerning the Information (whether as to quality, outcome, fitness, care, skill or otherwise) expressed or implied by statute, common law, equity, trade, custom or usage or otherwise are expressly excluded and to the extent that those statutory guarantees cannot be excluded, the liability of Sydney Water and Dial Before You Dig to you is limited to either of the following as nominated by Sydney Water in its discretion, which you agree is your only remedy:
 - (i) the supplying of the Information again; or
 - (ii) payment of the cost of having the Information supplied again;
 - (b) in no event will Sydney Water or Dial Before You Dig be liable for, and you release Sydney Water and Dial Before You Dig from, any Loss arising from or in connection with the Information, including the use of or inability to use the Information and delay in the provision of the Information:
 - (i) whether arising under statute or in contract, tort or any other legal doctrine, including any negligent act, omission or default (including wilful default) by Sydney Water or Dial Before You Dig; and
 - (ii) regardless of whether Sydney Water or Dial Before You Dig are or ought to have been aware of, or advised of, the possibility of such loss, costs or damages;
 - (c) you will indemnify Sydney Water and Dial Before You Dig against any Loss arising from or in connection with Sydney Water providing incorrect or incomplete information to you in connection with the Dial Before You Dig service; and
 - (d) you assume all risks associated with the use of the Dial Before You Dig and Sydney Water websites, including risk to your computer, software or data being damaged by any virus, and you release and discharge Sydney Water and Dial Before You Dig from all Loss which might arise in respect of your use of the websites.
- 5 "Sydney Water" means Sydney Water Corporation and its employees, agents, representatives and contractors. "Dial Before You Dig" means Dial Before You Dig Incorporated and its employees, agents, representatives and contractors. References to "you" include references to your employees, agents, representatives, contractors and anyone else using the Information. References to "Loss" include any loss, cost, expense, claim, liability or damage (including arising in connection with personal injury, death or any damage to or loss of property and economic or consequential loss, lost profits, loss of revenue, loss of management time, opportunity costs or special damages). To the extent of any inconsistency, the conditions in this document will prevail over any other information provided to you by Sydney Water and Dial Before You Dig.

In an emergency, or to notify Sydney Water of damage or threats to its structures, call 13 20 90 (24 hours, 7 days)

Further information and guidance is available in the Building Development and Plumbing section of Sydney Water's website at www.sydneywater.com.au, where you will find the following documents under 'Dial Before You Dig':

- Avoid Damaging Water and Sewer Pipelines
- Water Main Symbols
- Depths of Mains
- Guidelines for Building Over/Adjacent to Sydney Water Assets
- Clearances Between Underground Services

Or call 13 20 92 for Customer Enquires.

Note: The lodging of enquiries via **www.1100.com.au** will enable you to receive colour plans in PDF format 24 hours a day, 7 days a week via email.

This communication is confidential. If you are not the intended recipient, please destroy all copies immediately. Sydney Water Corporation prohibits unauthorised copying or distribution of this communication.

Telstra Accredited Plant Locators - New South Wales (Central Region)

If a physical location is required please contact a Telstra accredited locator from the list below (fees apply).

Name & areas covered	Contact details
Abitek Pty Ltd - Rouse Hill	(02) 4580 9883 or 0413 327 243 Fax: (02) 4580 9884
Absolute Locating Services Pty Ltd - Pennant Hills	(02) 9939 6978 or 0425 257 147 Fax: (02) 9484 7313
Ace Pipe Locating - Chester Hill All Areas, Sydney, Parramatta, Penrith, Ryde, Liverpool, Sutherland Shire, Bankstown, Wollongong, Central Coast	0467 002 222 Fax: (02) 9644 2308
Action Locating Sydney, Newcastle, Wollongong	0415 228 466 (02) 9671 5600
Advanced Ground Locations - Maitland Newcastle, Hunter Valley, Central Coast	(02) 4930 3195 or 0412 497488 Fax: (02) 4930 3222
Australian Locating Services Pty Ltd – Woolooware All of New South Wales	1300 761 545 or 0412 227 434 Fax: (02) 9531 2169 Email: admin@locating.com.au
Australian Subsurface - Canberra Canberra, ACT & NSW	0427 879 600 Fax: (02) 6247 6602 Email: admin@australiansubsurface.com
Australian Utilities Management Pty Ltd - Frenchs Forest	0424 537 952
Australian Underground Survey Solutions Pty Ltd - Narre Warren All Areas	(03) 9700 2311 or 0419 488 883 Fax: (03) 9314 1568
All About Pipes - Leppington	(02) 9606 2320 or 0408 790 010 Fax: (02) 9606 2325
Aquabend - Mirrabooka	0488 925 432
Aquatek Australia Pty Ltd All Areas	0418 612 445 (02) 9971 1294
Australian Locating Services All Areas	1300 761 545 or 0412 227 434 Fax (02) 9531 2169
Barry Bros Specialised Servcies - Milperra	(02) 8723 8777 or 0417 374 252 Fax (02) 9773 0777
Bedrock Bobcat & Excavation Pty Ltd - Minnamurra	(02) 4237 5659 Fax (02) 4237 8029
Bradmac Locating Services - Winmalee	0434 157 409 Fax (02) 4754 3735
Cable & Pipe Locations Coffs Harbour, Yamba, Dorrigo, Grafton, Nambucca, Kempsey	0408 730 430 Fax: (02) 6649 1236

Name & areas covered	Contact details
Cardno Australian Underground Services All Areas	1300 224 664 or (02) 9627 5988
CCTS Telecommunications Construction Pty Ltd – Central Coast and Hunter Valley	(02) 4329 9900 Fax (02) 4329 9950 Email servicelocations@ccts.com.au
Chris Bates and Associates - Tighes Hill Mid North Coast, Newcastle, Hunter Valley and Central Coast	0408 427 391 Fax (02) 4969 4028
Civil Directions Pty Ltd - Ourimbah Central Coast, Newcastle, Hunter Valley, Lake Macquarie, Hornsby Area	(02) 4362 8503 or 0412 360 921
Civilscan Pty Ltd Greater Sydney	0416 068 060
Concrete and Utility Scanning Services – Miranda ACT, Wollongong, Nowra, Goulburn, Sydney, Gosford, Newcastle, Ulladulla	0487 449 376 Fax: (02) 9531 2391 Email: davidchristlo1@gmail.com
Down Under Consulting - Westleigh	0408 150 345
Down Under Detection Services - Rose Bay	(02) 9371 7744
Down Under Pipeline Surveys Pty Ltd - Orangeville	(02) 4653 1286 or 0418 675 374 Fax (02) 4653 1747
Durkin Construction Pty Ltd - Auburn All Areas	(02) 9712 0308 or 0413 158 255 Fax (02) 9712 0206
Find and Seek Locating – Coomera All Areas, Remote Destinations	0407 510 289
GBG Australia Pty Ltd - Sydney All Areas	(02) 98 90 2122 or 0433 940 477 Fax: (02) 98 90 2922 Email: tuan@gbgoz.com.au
Geotrace Pty Ltd - Kings Langley All Areas, Hills District, Sydney, Wollongong, Newcastle, ACT, Sutherland, Bankstown, Richmond, Burwood, Rose Bay, Balmain	(02) 8824 6654 or 0417 147 945 Fax: (02) 8824 5637 Email: antony@geotrace.net.au
G & C McCorkindale - Dubbo, Young, Wagga Yass, Goulburn, Bathurst, Orange, Temora, West Wyalong & most NSW country regions, Burwood, Rose Bay, Balmain	0408 822 428 Fax: (02) 6382 2639
Ground Scan Locating Bathurst & Central West	0414 640 640 Fax (02) 6332 2599
Hi-Tech Locations - Barnsley Newcastle, Hunter Valley, North Coast, South Coast	(02) 4953 4226 or 0466 583 962 Fax: (02) 4953 4227
Hunter Ground Search - Cameron Park Central Coast, Hunter Valley, Newcastle	(02) 4953 1244 or 0418 684 819
Hunter Smith Management NSW & ACT	(02) 8090 2695 or 0422 224 761 Fax (02) 8282 5056
Hunter Valley Excavations Pty Ltd - Muswellbrook Singleton, Muswellbrook, Aberdeen, Scone, Murrurundi, Merriwa	0427 949 507 Fax: (02) 6541 5280

Name & areas covered	Contact details
Lambert Locations - Gold Coast South East Queensland, Northern NSW	1300 150 035 or 0418 150 035
Laneyrie Electrical Pty Ltd - Dapto Helensburg to Ulladulla, Southern Highlands	(02) 4262 8166 or 0412 079 079 Fax (02) 4260 9193 Email: bindy@laneyrieelectrical.com.au
Lend Lease Infrastructure Services - Seven Hills	1300 484 008 Fax: (02) 9620 9516
Locaters Sydney, Penrith, Richmond, Macarthur, Wollongong	0418 262 025
Lynco Pty Ltd t/as Lyntet Communications - Dubbo Dubbo, Forbes, Grenfell, Parkes, Bourke, Bourke North, Nyngan, Coonabarabran, Coonamble, Mudgee, Narromine, Wellington, Orange, Molong, Yeoval, Coolah, Dunedoo, Gilgandra, Mendooran	0409 811 673 Fax (02) 6882 9856
Metro Resources Group Pty Ltd - Revesby	(02) 9773 3700 Fax: (02) 9792 4912
Mia Pipe & Cable Layers Pty Ltd - Griffith	(02) 6964 0083 or 0418 501 050 Fax: (02) 6964 7877
Newcastle Locating Services - <i>Metford</i> <i>Newcastle, Hunter Valley, Upper Hunter Valley, Port Stephens</i>	(02) 4933 5160 Mob: 0410 698 599 Fax: (02) 4933 5150 Email: Afarcas@Bigpond.com
O'Donnell Griffin Pty Ltd - <i>Mitchell</i> <i>Canberra, Queanbeyan, Yass</i>	(02) 6204 3300 or 0428 227 608 Fax: (08) 6209 9761
Online Pipe & Cable Locating - Girraween	1300 665 384 or 0418 402 234 Fax (02) 9676 6127
On Point Utility Locating Pty Ltd - Woodpark Sydney, Parramatta, Penrith, Wollongong, Central Coast, Highlands, Goulburn, Blue Mountians	Mob:0405 149 529
Optical Fibre Technologies - Mortdale Sutherland, Sydney Metro, All Areas	(02) 9153 0533 or 0402 354 322 Fax: (02) 9153 0833 Email: opticaltek1@aol.com
Pennoscan - Blacktown	1800 459 879 or 0403 908 099 george@pennoscan.com.au
Pipeline Technology Services	(08) 8351 7000 or 0419 878 220 Fax:(08) 8159 7537
Point Locations - East Corrimal Sydney & Surrounding areas, Wollongong, South Coast, Southern highlands	0417 683 939
Riteway Traffic Control - Charmhaven Central Coast - Newcastle/Hunter	0419 212 969 email: <u>kbrowne@ritewaytc.com.au</u>
Riverina Horizontal Boring Pty Ltd - Wodonga	(02) 6059 1788 or 0419 149 153 Fax: (02) 6059 5090

Name & areas covered	Contact details
Techdrill Civil Services Pty Ltd - Upper Coomera	(07) 5573 1578 or 0407 319 997 Fax: (07) 5665 7233
Rubicof - Cessnock Gosford, Newcastle, Taree, Bathurst	(02) 4990 5718 or 0418 683 451 Fax: (02) 4991 2600
Rutherford Electrical Engineering Services - Rutherford	(02) 4932 7344 Fax (02) 4932 5219
Seek Locations Pty Ltd - Tuncurry Forster, Gloucester, Taree, Port Macquarie, Karuah, Kempsey	(02) 6555 8550 or 0407 256 858 Fax (02) 6555 2548
Safe Dig Vacuum Excavation - Greenbank	0439 220 076 or 0408 880 262 Fax: (07) 3297 6639
Shamrock Civil - Birkdale	0424 605 497
Signal Support Services - Goulburn Goulburn, Southern Highlands, Canberra	(02) 4821 8334 or 0418 237 668 Fax: (02) 4821 0203
Siteline Projects Pty Ltd - Fairlight Greater Sydney, Newcastle	1300 788 814 or 0418 215 441 Fax: (02) 9938 3172
Suk Truk Services Pty Ltd - Branxton Lower & Upper Hunter Valley, Mid North Coast, Central Coast, Newcastle	0419 125 551 Fax: (02) 4938 3418
Suresearch Aust - Wentworthville Sydney, Penrith, Richmond, Wollongong, Katoomba, Macarthur, Central Coast, Newcastle, Maitland, Hunter Valley, Port Macquarie	1300 884 520 or 0408 221 046 Fax: (02) 8915 1487
Sydwide Concrete Saw & Pipe Locators Pty Ltd	0400 815 095 Fax: (02) 9822 7048
Tamworth Precision Excavations - Tamworth	(02) 6760 7722 or 0428 668 728 Fax: (08) 6760 7755
Underground Service Locations Pty Ltd - Gosford Central Coast	(02) 4324 7496 or 0408 677584 Fax: (02) 4323 2626
Vac-U-Digga Pty Ltd - Ormeau	1300 822 834 Mob: 0409 468 711 Fax: 07 3807 5599

DUTY OF CARE

TELSTRA CORPORATON ACN 051 775 556

IMPORTANT:

Please read and understand all the information and disclaimers provided below.

Sketches and Plans provided by Telstra are circuit diagrams only and indicate the presence of telecommunications plant in the general vicinity of the geographical area shown; exact ground cover and alignments cannot be given with any certainty and cover may alter over time. Telecommunications plant seldom follow straight lines and careful on site investigation is essential to uncover and reveal its exact position.

Due to the nature of Telstra plant and the age of some cables and records, it is impossible to ascertain the location of all Telstra plant. The accuracy and/or completeness of the information cannot be guaranteed and, accordingly Telstra plans are intended to be indicative only.

"DUTY OF CARE"

When working in the vicinity of telecommunications plant you have a legal "Duty of Care" that must be observed.

It is the responsibility of the owner and any consultant engaged by the owner, including an architect, consulting engineer, developer, and head contractor to design for minimal impact and protection of Telstra plant. Telstra will provide plans and sketches showing the presence of its network to assist at this design stage.

It is the owner's (or constructor's) responsibility to:-

a) request plans of Telstra plant for a particular location at a reasonable time before construction begins. If you have any doubts as to the exact location of Telstra Plant, we strongly recommend that you engage an Accredited Plant Locator in your area;

b) visually locate Telstra plant by hand digging or using non destructive water jet method (pot holing) where construction activities may damage or interfere with Telstra plant (see "Essential Precautions and Approach Distances" section for more information); and

c) contact Telstra's **Plan Services** (see below for details) if Telstra plant is wholly or partly located near planned construction activities.

DAMAGE TO TELSTRA'S NETWORK MUST BE REPORTED TO 132203 IMMEDIATELY.

The owner is responsible for all plant damage when works commence prior to obtaining Telstra plans, or failure to follow agreed instructions.

Telstra reserves all rights to recover compensation for loss or damage to its cable network or other property including consequential losses.

Important note: The construction of Telstra's network dates back over many years. Some of Telstra's pits and ducts were manufactured from asbestos-containing cement. You must take care in conducting any works in the vicinity of Telstra's pits and ducts. You must refrain from in any way disturbing or damaging Telstra's network infrastructure when conducting your works. We recommend that before you conduct any works in the vicinity of Telstra infrastructure that you ensure your processes and procedures eliminate any possibility of disturbing, damaging or interfering in any way with Telstra's infrastructure. Your processes and procedures should incorporate appropriate measures having regard to the nature of this risk.

EMERGENCY SITUATIONS - RECEIVING TELSTRA PLANS

Telstra's automated mapping system will provide a fast response for emergency situations. (faster than an operator can provide manually). Automated responses are normally available 24/7.

To receive a fast automated response from Telstra your request must -

- be a web request lodged at DBYD (**www.1100.com.au**) The request will be then forwarded directly to Telstra.
- contain your email address so you can receive the automated email response.
- be for the purposes of 'mechanical excavation' or other ground breaking DBYD activity. (requests with activity types conveyancing, planning & design or other non digging activities may not be responded to until the next business day).
- be for an area less than 350 metres in size to obtain a PDF map. (over 350 metres will default to DWF due to size)
- be for an area less than 2500 metres in size to obtain a DWF map

NATURAL DISASTERS

Natural Disasters include (amongst other things) earthquakes, cyclones, floods and tsunamis.

In the case of such events, urgent requests for plans or information relating to the location of Telstra network can be made directly to Telstra Network Integrity Team Managers as follows:

NSW - Joe Palucci 0419 496 015

QLD - Shaun Walliss 0419 638 150

VIC/TAS - David Povazan 0417 300 947

SA/NT/WA - Dave Ballard 0419 807 901

TELSTRA PLAN SERVICES

For all Telstra DBYD (Dial Before You Dig) map enquiries please contact Telstra Plan Services

email - Telstra.Plans@team.telstra.com

fax - (02) 4961 3714

phone - 1800 653 935 (for urgent, onsite or optic fibre enquiries)

Please note - to make an enquiry the plans must be current (within 60 days of issue). If your plans have expired you will need to submit a new request via DBYD.

ASSET RELOCATIONS

You are not permitted to relocate or alter any Telstra assets or network under any circumstance. For all enquiries relating to the relocation of Telstra assets please phone **1800 810 443** or email <u>F1102490@team.telstra.com</u>

DATA EXTRACTION FEES

In some instances a data extraction fee may be applicable for the supply of Telstra information. Typically a data extraction fee may apply to large projects, requests to be supplied in non standard formats, excessive hardcopy printing or requests for non digging purposes. Further details can be obtained by contacting Telstra Plan Services.

PRIVACY NOTE

Your information has been provided to Telstra by DBYD to enable Telstra to respond to your DBYD request. Telstra keeps your information in accordance with its privacy statement entitled "Protecting Your Privacy" which can be obtained from Telstra either by calling 1800 039 059 or visiting our website at www.telstra.com.au/privacy

CONCERNING TELSTRA PLANS:

Please note the following:

- For plans of Telstra locations contact **Dial Before You Dig** at least 2 business days prior to digging. (www.1100.com.au)
- Fast response can be provided by Telstra if an email address is supplied. (if posted, this may take up to one week or longer to receive plans)
- Telstra plans and information provided are **valid for 60 days** from the date of issue.
- Telstra owns and retains the copyright in all plans and details provided in conjunction with the applicant's request. The applicant is authorised to use the plans and details only for the purpose indicated in the applicant's request. The applicant must not use the plans or details for any other purpose. The plans and details should be disposed of by shredding or any other secure disposal method after use.
- Telstra plans or other details are provided only for the use of the applicant, its servants, or agents. The applicant may not give the plans or details to other parties, and may not generate profit from commercialising the plans or details.
- Please contact Telstra **Plan Services** (see above for details) immediately should you locate Telstra assets not indicated on these plans.
- Telstra, its servants or agents shall not be liable for any loss or damage caused or occasioned by the use of plans and or details so supplied to the applicant, its servants and agents, and the applicant agrees to indemnify Telstra against any claim or demand for any such loss or damage.

Please ensure Telstra plans and information provided remains on-site at all times throughout your construction phase.

ESSENTIAL PRECAUTIONS and APPROACH DISTANCES:

NOTE: If the following clearances cannot be maintained, please contact Telstra Plan Services (see above for details) for advice on how best to resolve this situation.

1. On receipt of plans and sketches and before commencing excavation work or similar activities near Telstra's plant, **carefully locate this plant first** to avoid damage. Undertake prior manual exposure such as potholing when intending to excavate or work **closer** to Telstra plant than the following approach distances.

Where Telstra's plant is in an area where road and footpaths are well defined by kerbs or other features a minimum clear distance of 600mm must be maintained from where it could be reasonably presumed that plant would reside.

In non established or unformed reserves and terrain, this approach distance must be at least 1.5 metres.

In country/rural areas which may have wider variations in reasonably presumed plant presence, the following minimum approach distances apply:

- a) Parallel to major plant: 10 metres (for IEN, optic fibre and copper cable over 300 pairs)
- b) Parallel to other plant: 5 metres

NOTE: Even manual pot-holing needs to be undertaken with extreme care, commonsense and employing techniques least likely to damage cables. For example, orientate shovel blades and trowels parallel to the cable rather than digging across the cable.

If construction work is parallel to Telstra plant, then careful hand digging or using non destructive water jet method (pot-holing) at least every 5m is required to establish the location of all plant, hence confirming nominal locations before work can commence.

2. Maintain the following minimum clearance between construction activity and **actual location** of Telstra Plant.

Jackhammers/Pneumatic Breakers	Not within 1.0m of actual location.
Vibrating Plate or Wacker Packer	Not within 0.5m of Telstra ducts.
Compactor	300mm compact clearance cover before
	compactor can be used across Telstra ducts.
Boring Equipment	Not within 2.0m of actual location.
(in-line, horizontal and vertical)	Constructor to hand dig or use non-destructive
	water jet method (pot-hole) and expose plant.
Heavy Vehicle Traffic (over 3 tonnes)	Not to be driven across Telstra ducts (or plant)
	with less than 600mm cover.
	Constructor to check depth via hand digging.
Mechanical Excavators, Farm	Not within 1.0m of actual location.
ploughing and Tree Removal	Constructor to hand dig or use non-destructive
	water jet method (pot-hole) and expose plant.

All Telstra pits and manholes should be a minimum of 1.2m in from the back of kerb after the completion of your work.

All Telstra conduit should have the following minimum depth of cover after the completion of your work:-Footway 450mm

Roadway 450mm at drain invert and 600mm at road centre crown

For clearance distances relating to Telstra pillars, cabinets and RIMs/RCMs please contact Telstra Plan Services (see above for details).

FURTHER ASSISTANCE:

Assistance can be obtained by contacting Telstra Plan Services

Where on-site location is provided, the owner is responsible for all hand digging or use non-destructive water jet method (pot-holing) to visually locate and expose Telstra plant.

If plant location plans or visual location of Telstra plant by digging reveals that the location of Telstra plant is situated wholly or partly where the owner plans to work, then Telstra's Network Integrity Group must be contacted through Telstra Plan Services to discuss possible engineering solutions.

NOTE:

If Telstra relocation or protection works are part of the agreed solution, then payment to Telstra for the cost of this work shall be the responsibility of the principal developer or constructor. The principal developer or constructor will be required to provide Telstra with the details of their proposed work showing how Telstra's plant is to be accommodated and these details must be approved by the Regional Network Integrity Manager prior to the commencement of site works.

RURAL LANDOWNERS - IMPORTANT INFORMATION

Where Telstra owned cable crosses agricultural land, Telstra may provide a once-off free on-site electronic cable location. The Telstra Plan Services operator will provide assistance in determining whether a free on-site location is required.

Please note:

- The exact location, including depth of cables can only be verified by pot holing, which is not covered by this service.
- This service is only available to assist private rural land owners.
- This service covers one hour on-site only. Additional time can be purchased directly from the Accredited Plant Locator.

For further information including terms and conditions, please contact Plan Services on **1800 653 935**.

LEGEND

Some examples of how to read Telstra plans:

One 50mm PVC conduit (P50) containing a 50-pair and a 10-pair cable between two 6-pits, 20.0m apart, with a direct buried 30-pair cable along the same route.

Two separate conduit runs between two footway access chambers (manholes) 245m apart. A nest of four 100mm PVC conduits (P100) containing assorted cables in three ducts (one being empty) and one empty 100mm concrete duct (C100) along the same route.

WARNING: Telstra's plans show only the presence of cables and plant. They only show their position relative to road boundaries, property fences etc. at the time of installation and Telstra does not warrant or hold out that such plans are accurate thereafter due to changes that may occur over time.

DO NOT ASSUME DEPTH OR ALIGNMENT of cables or plant as these vary significantly.

The customer has a DUTY OF CARE when excavating near Telstra cables and plant. Before using machine excavators TELSTRA PLANT MUST FIRST BE PHYSICALLY EXPOSED BY SOFT DIG (potholing) to identify its location. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers.

ELECTRONIC PLANS - PDF AND DWF MAPS

If you have received Telstra maps via email you will have received the maps as either a PDF file (for smaller areas) or DWF file (for larger area requests). If you are unable to launch any one of the softcopy files for viewing and printing, you may need to download and install one or more of the free viewing and printing products such as Adobe Acrobat Reader (for PDF files) or Autodesk Design Review (for DWF files) available from the internet.

PDF files

PDF is the default softcopy format for all requests for areas up to approx *350m in length. (*depends on geographic location of request). The PDF file is formatted to A3 portrait sheet however it can be printed on any size sheet including from A4 to AO, either as the full sheet or selected areas to suit needs and legibility. (to print a selected area zoom up and print "current view"). If there are multiple layers of Telstra network you may receive up to 2 sheets in the single PDF file attachment supplied. There are three types or layers of network normally recorded - local network, mains cables or a combined layer of local and mains (usually displayed in rural or semi rural areas). If mains cable network is present in addition to local cables (i.e. as separate layer in a particular area), the mains will be shown on a separate sheet. The mains cable information should be read in conjunction with the local cable information.

DWF files

This is the default softcopy format for all requests for areas that are over 350m in length. Maximum length for a DWF automated response is approx 2500m - depending on geographic location of request (manually-processed plans may provide larger coverage). The DWF files differ from PDF in that DWF are vector files made up of layers that can be turned on or off and are not formatted to a specific sheet size. This makes them ideal for larger areas and for transmitting over email etc.

How to view Telstra DWF files -

Telstra DWF files come with all layers turned on. You may need to turn individual layers on or off for viewing and printing clarity. Individual layer names are CC (main cable/conduit), DA (distribution or local area network) and sometimes a combined layer - CAC. Layer details can be viewed by either picking off the side menu or by selecting 'window' then 'layers' off the top menu bar. Use 'layers' to turn individual layers off or on. (double click or right click on layer icon.)

How to print Telstra DWF files -

DWF files can be printed on any size sheet. They can be printed in their entirety or by selected areas of interest. Some DWF coverage areas are large and are not suited to printing legibly on a single A4 sheet - you may need several prints if you only have an A4 printer. Alternatively, an A3, A1 or larger printer could be used. To print, zoom in or out and then, by changing the 'print range' settings, you can print what is displayed on your screen to suit your paper size. If you only have a small printer, e.g. A4, you may need to zoom until the text is legible on your screen for it to be legible on the print. (which is why you may need several prints). To print what is displayed on your screen the 'view' setting should be changed from 'full page' to 'current view'. The 'current sheet' setting should also be selected. You may need to print layers separately for clarity and legibility. (details above on how to turn layers on or off)

How to change the background colour from white to black (when viewing) Telstra DWF files -If using Autodesk Design Review the background colour can be changed by selecting "Tools" then "options" then "sheet". Tick the box "override published paper colors" and select the colour required using the tab provided.

Telstra Automated Mapping System

Telstra provides an automated plan response for the majority of DBYD requests received.

Requestors must supply a current email address on their request to DBYD and must also be able to accept a standard format of PDF or DWF. An automated response can be provided much faster than the alternative of a mailed hardcopy, and can avoid unnecessary delays in waiting for plans to arrive. Being softcopy, it can easily be sent directly to a worksite and can be available 7 days a week. The automated system can be configured for individual requestors to receive either PDF/DWF (where small requests are PDF and larger requests are DWF) or, alternatively, all in DWF (both small and large requests). Please contact Plan Services for further details or to have your preferences updated. Please note that all requests over *500m (approx.) in size can only be supplied in DWF format and there are size limits on what can be provided. (* actual size depends on geographic location of requested area)

ACCREDITED PLANT LOCATORS (For your area)

On-site assistance should be sought from an **Accredited Plant Locator** (Telstra accredited), if the telecommunications plant cannot be located within 2.5 metres of the locations indicated on the drawings provided.

On-site advice should be obtained from the Telstra Accredited Plant Locator who is highly skilled in locating Telstra plant. In the case where Telstra plant is outside a recognised road reserve Telstra recommends that Telstra Plan Services are contacted for assistance prior to engaging an Accredited Plant Locator.

Telstra does not permit external parties (non-Telstra) to conduct work on our network. Only Telstra staff or Telstra contractors are allowed to enter our manholes, open our pits, ducts, etc.

Please note it is a criminal offence under the *Criminal Code Act 1995* (Cth) to tamper or interfere with communication facilities owned by a carrier. Heavy penalties may apply for breach of this prohibition, and any damages suffered, or costs incurred by Telstra as a result of any such unauthorised works may be claimed against you.

Should your projects require Telstra network location, any asset Plant Locator used MUST be Telstra accredited to be able to access and locate Telstra network. (a list of which is provided with the Dial Before You Dig plans). Alternatively you may seek your own Telstra accreditation through our registered training partner Coates Hire Training which is the only approved training provider for Plant Location accreditation for Telstra's network. You may contact Coates Hire Training on

1300 657 867 or visit www.coateshire.com.au

For the assistance of customers an accredited Asset Plant Locator can perform any of the following activities if requested to do so by the owner:

- review Telstra's plans to assess the approximate location of Telstra plant;
- advise owners of the approximate location of Telstra plant according to the plans;
- advise owners of the best method for locating Telstra plant;
- advise owners of the hazards of unqualified persons attempting to find the exact location of Telstra plant and working in the vicinity of Telstra plant without first locating its exact position; and
- perform trial hole explorations by hand digging (pot-holing) to expose Telstra plant with a high degree of skill, competence and efficiency and utilising all necessary safety equipment.

A list of Accredited Plant Locators operating in your area is attached. Accredited Plant Locators are certified by Telstra to perform the tasks listed above. Owners may engage Accredited Plant Locators to perform these services, however Telstra does not give any warranty in relation to these services that Accredited Plant Locators are competent or experienced to perform any other services.

The attached list provides the names and contact details for Accredited Plant Locators who service your area and can provide you with assistance in locating Telstra plant on site. These organisations have been able to satisfy Telstra that they have a sound knowledge of telecommunications plant and its sensitivity to disturbance; appropriate equipment for locating telecommunications plant and competent personnel who are able to interpret telecommunications plans and sketches and understand safety issues relevant to working around telecommunications plant. They are also able to advise you on the actions which should be taken if the work you propose will/could result in a relocation of the telecommunications plant and/or its means of support.

We recommend that you engage the assistance of one of these Accredited Plant Locators as a step towards discharging your Duty of Care obligations when seeking the location of Telstra's telecommunications plant.

Please Note:

- Each Accredited Plant Locator is NOT permitted to provide depth of communications plant unless physically exposed by hand digging.
- The details of any contract, agreement or retainer for site assistance to locate telecommunications plant shall be for you to decide and agree with the organisation

engaged. Telstra is not a party to any contract entered into between an owner and an Accredited Plant Locator. The Accredited Plant Locators are able to provide guidance concerning the extent of site investigations required.

- Payment for the site assistance will be your responsibility and payment details should be agreed before the engagement is confirmed.
- Telstra does not accept any liability or responsibility for the performance of or advice given by an Accredited Plant Locator. Accreditation is an initiative taken by Telstra towards the establishment and maintenance of competency standards. However, performance and the advice given will always depend on the nature of the individual engagement.
- Each Accredited Plant Locator has been issued with a certificate which confirms the Accreditation. Every 2 years Telstra will reassess the accreditation and where appropriate will issue a letter confirming the accreditation for the next 2 years. You have the right to request the organisation you engage to show evidence of their ID card.
- Neither the Accredited Plant Locator nor any of its employees are an employee or agent for Telstra and Telstra is not liable for any damage or loss caused by the Accredited Plant Locator or its employees.
- The attached list contains the current names and contact details of Accredited Plant Locators who service your area, however, these details are subject to change.

IDEA FOR CONSIDERATION:

Telstra offer free Cable Awareness Presentations & Advanced Cable Reading Presentations, if you believe you or your company would benefit from this offer please contact Network Integrity on 1800 810 443 or **F1102490@team.telstra.com**

Working near Ausgrid cables

Finding out what's below the surface can save your life. Call Dial Before You Dig on **1100** or visit **1100.com.au**

Changes in the Law.

NSW legislation now requires people who are planning to do excavation work to obtain copies of underground electricity cable plans through Dial Before you Dig (Phone 1100) and to make sure that the plans are no more than 30 days old when excavation commences.

The aim of the legislation is to ensure that when workers dig near electricity cables, they will establish the exact location of the cables and thus avoid coming into contact with them or damaging them. This will ensure worker safety and also prevent disruption to Ausgrid's electricity network.

This brochure gives you a brief overview of how to prepare for excavation works near or around electricity cables. It is important that you also consult our guide Reading Ausgrid Plans and make sure that workers engaged in excavation works fully understand how to read the plan. If the people actually doing the digging can't read the plans, it is essential that the work is directed by a person who has been trained to read Ausgrid's plans.

You must also consult Ausgrid's Network Standard NS156, which contains comprehensive information concerning all the issues that arise when excavating near underground cables (such as safety hazards from asbestos conduits and organochlorine pesticides).

Excavating near transmission cables.

If any cable plan you receive says "You are working near transmission cables" it is compulsory to notify Ausgrid two weeks before work is scheduled to begin. Ausgrid will then arrange for an Ausgrid representative to attend the site during excavation work.

Phone the Ausgrid Transmission enquiries line on (02) 4951 9200 to arrange for an Ausgrid representative in your region.

Be prepared. Wise words for safety at work.

Here are some simple precautions you and your workers need to follow in order to be as safe as possible.

- Make sure that you have the latest cable plan available
- Keep a copy of the cable plan on site at all times
- Make sure the excavation work is conducted or directed by staff who are trained to read the plan
- Hand dig until the exact location of the cable has been established
- Have on site at all times a first aid kit and a person trained in resuscitation
- Wear protective clothing, including safety footwear and safety helmet
- Have emergency contact numbers on site
- Set up safety barriers, witches hats and warning lights to reduce the risk of injury to the general public
- Comply with all WorkCover requirements and codes.

See also:

- WorkCover Guidelines: Work Near Underground Assets
- WorkCover Code of Practice: Excavation Work
- WorkCover Code of Practice: Work Near Overhead Powerlines (if applicable).

Before you start. Complete the checklist. Stop and look around.

Before you start excavating, consult the flow chart and fill in the checklist at the end of this brochure.

Then, be sure to look for clues where cables might be located on the site: for example pits, distribution pillars (green and other colours), cables attached to the side of poles, street lights without overhead wires.

Do all power cables look the same?

No. Power cables come in different sizes, colours and coverings. They may be covered in black plastic sheath, steel wires in a sticky bitument like material, or even a simple lead or steel wire/tape sheath.

What else should I look for below ground level?

Cables may also be buried in orange PVC or PE conduits or even in earthenware or steel pipes. A bank of cables may be covered with electrical bricks, plastic warning markers or protective covers, or they may not be covered at all. If they have been buried close to the surface, they may be covered by concrete slabs or steel plates.

When in doubt, ask Ausgrid.

If you have any questions about excavating near Ausgrid cables, read **NS156** (available at <u>ausgrid.com.au</u>). For further information call 13 15 35.

You've taken every precaution but accidents still happen. What now?

If you damage an electricity cable, it is compulsory to notify Ausgrid on 13 13 88.

Striking power cables can cause serious damage to the cables and endanger the lives of anyone who comes in contact with them. Machinery and hand operated plant such as jack hammers can become alive if it is in contact with electrical cables or equipment. Keep people well away from machinery and the work site if contact is made with a cable.

Flow Chart for work near Ausgrid Cables

Ausgrid Checklist for work near or around underground cables

It is the responsibility of the Constructor to ensure that underground pits, ducts and cables are not damaged as a result of construction work. It is also your duty to protect your workers from harm or injury. This Checklist is intended to be used as a guide to what Constructors should do to make sure they have satisfied the minimum requirements to minimise damage to underground networks.

PLANS, LOCATION and NOTIFICATIONS	Completed
All relevant utilities plans obtained from Dial Before You Dig? (call 1100 – allow at least 5 working days for plans).	
Checked issue date on all the above plans to ensure issue was within the last 30 days?	
Examined plans and assessed all possible impacts on Ausgrid's network?	
Do you have both Underground Distribution and Transmission Plans (if applicable), on site at all times?	
All cables and conduits shown on the Ausgrid plans been located and marked on the ground?	
If you are planning to use a bore, have you ensured that the equipment is calibrated?	
Have you read and understood the requirements of NS 156? (for copies of NS 156 visit Ausgrid's Website or phone Ausgrid DB4YD Office (02) 4951 0899) <u>www.ausgrid.com.au</u>	
Have you notified Ausgrid as specified by NS 0156 and complied with requirements?	
Where an Ausgrid representative is required, two weeks notice is required before work commencing on site.	
Contact phone number for Transmission cable enquiries is (02) 4951 9200. For all other cases contact Ausgrid DB4YD Office: (02) 4951 0899.	
INSPECTION OF WORK BY Ausgrid's REPRESENTATIVE	
Is the Ausgrid representative on site for any work near or around [*] any transmission cable before you start? (*Refer to NS 156.)	
For proposed work near or around" cables other than transmission and/or conduits, are any requirements specified by Ausgrid's representative clearly understood and ready to be applied before you start the work? ("Refer to NS 156.)	
PROTECTION	
Check that all people on-site have been made aware of the presence and location of ALL Ausgrid underground cables and/or conduits; especially boring, drilling and trenching machine operators?	
Is there any asbestos or asbestos containing material in Ausgrid's underground network assets?	
Have you checked for the presence of any Organo-Chloride Pesticides (OCP) in transmission trenches?	
Is the site supervisor monitoring all machine operators working near or around Ausgrid's underground cables and/or conduits?	
Are the requirements specified by Ausgrid's representative being followed?	
Are Ausgrid's requirements in place for any exposed cables and/or conduits to be supported and protected?	
Have you marked all exposed underground cables and/or conduits with flags that are clearly visible from within all machinery used on-site?	
Have safety barriers, fencing or para-webbing been erected to protect staff and the public as well underground cables and/or conduits in areas that are at risk?	
Have safety barriers, fencing or para-webbing been erected to protect staff and the public as well underground cables and/ conduits in areas that are at risk?	

In the event of DAMAGE to Ausgrid's cable or conduits, call 13 13 88 immediately. PROCEED with CAUTION

It is your responsibility to protect Ausgrid's cables and conduits from damage and your Duty of Care to protect your workers from harm or injury.

Signed: _____

Responsible person on site

_ Date: _____ / ____ / _____

For more information call 13 15 35 or visit <u>www.ausgrid.com.au</u>

APPENDIX H

GROUNDWATER BORE SEARCH

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Friday, October 11, 2013

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW111692

Works Details (top)

GROUNDWATER NUMBER	GW111692
LIC-NUM	10BL605067
AUTHORISED-PURPOSES	MONITORING BORE
INTENDED-PURPOSES	MONITORING BORE
WORK-TYPE	Bore
WORK-STATUS	Equipped - bore used for obs
CONSTRUCTION-METHOD	Auger - Solid Flight
OWNER-TYPE	Local Govt
COMMENCE-DATE	
COMPLETION-DATE	2012-01-12
FINAL-DEPTH (metres)	1.30
DRILLED-DEPTH (metres)	1.30
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	SYDENHAM RD
GWMA	w
GW-ZONE	***
STANDING-WATER-LEVEL	0.50
SALINITY	
YIELD	

Site Details (top)

REGION 10 - SYDNEY SOUTH COAST **RIVER-BASIN AREA-DISTRICT** CMA-MAP **GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6246701.00 EASTING 329704.00 LATITUDE 33 54' 23" 151 9' 29" LONGITUDE **GS-MAP**

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	PETERSHAM
PORTION-LOT-DP	1//173107

Licensed (top)

COUNTYCUMBERLANDPARISHPETERSHAMPORTION-LOT-DP1 173107

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm) INTERVAL	DETAIL
1		Hole	Hole	0.00	1.30	100		Auger - Solid Flight
1	1	Casing	PVC Class 18	0.00	0.60	50	40	Screwed; Seated on Bottom; End cap
1	1	Opening	Slots - Horizontal	0.60	1.30	50		PVC Class 18; Casing - Machine Slotted; SL: 35mm; A: 4mm; Screwed
1		Annulus	Waterworn/Rounded	0.60	1.30			Graded; GS: 2- 2.5mm

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO-DEPTH (metres)	I THICKNESS (metres)	ROCK- CAT- DESC	S- W-L	D- D- L	YIELD	TEST-HOLE- DEPTH (metres)	DURATION	SALINITY
0.50	1.30	0,80		0.50					

Drillers Log (top)

-

î 1

ļ

FROM TO THICKNESS DESC

GEO-MATERIAL COMMENT

0.00	0.20 0.20	TOPSOIL BROWN SOFT
0.20	0.60 0.40	CLAY BTOWN LOOSE WET
0.60	1.30 0.70	CLAY SOFT VERY WET

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Friday, October 11, 2013

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW111686

Works Details (top)

GW111686
10BL605066
MONITORING BORE
MONITORING BORE
Bore
Equipped - bore used for obs
Auger - Solid Flight
Local Govt
2012-01-12
3.50
3.50
HENSON PARK
*
-
1.55

Site Details (top)

REGION	10 - SYDNEY SOUTH COAST
RIVER-BASIN	
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6246909.00
EASTING	329728.00
LATITUDE	33 54' 16"
LONGITUDE	151 9' 30"
GS-MAP	

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	PETERSHAM
PORTION-LOT-DP	423//1035319

Licensed (top)

COUNTYCUMBERLANDPARISHPETERSHAMPORTION-LOT-DP423 1035319

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm) INTERVAL	DETAIL
1		Hole	Hole	0.00	3.50	100		Auger - Solid Flìght
1	1	Casing	PVC Class 18	0.00	1.20	50	40	Screwed; Seated on Bottom; End cap
1	1	Opening	Slots - Horizontal	1.20	3.50	50		PVC Class 18; Casing - Machine Slotted; SL: 35mm; A: 4mm; Screwed
1		Annulus	Waterworn/Rounded	1.20	3.50			Graded; GS: 2- 2.5mm

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO-DEPTH (metres)	I THICKNESS (metres)	ROCK- CAT- DESC	S- W-L	D- D- L	YIELD	TEST-HOLE- DEPTH (metres)	DURATION SALINITY	•
1.55	3.50	1.95		1.55					

Drillers Log (top)

http://is2.dnr.nsw.gov.au/proxy/dipnr/gwworks?GWWID=GW111686

FROM	I TO THICKNES	S DESC	GEO-MATERIAL COMMENT
0.00	0.40 0.40	FILL, CLAY BANDS, BROWN	
0.40	1.20 0.80	SILTY CLAY, BEIGE, HIGH PLASTICITY, FIRM	
1.20	2.50 1.30	SILTY CLAY, BEIGE, SOFT, H/PLASTICITY	
2.50	3.50 1.00	CLAY GREY, FIRM, DRY	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Page 3 of 3

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Friday, October 11, 2013

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW111687

Works Details (top)

GROUNDWATER NUMBER	GW111687
LIC-NUM	10BL605066
AUTHORISED-PURPOSES	MONITORING BORE
INTENDED-PURPOSES	MONITORING BORE
WORK-TYPE	Bore
WORK-STATUS	Equipped - bore used for obs
CONSTRUCTION-METHOD	Auger - Solid Flight
OWNER-TYPE	Local Govt
COMMENCE-DATE	
COMPLETION-DATE	2012-01-12
FINAL-DEPTH (metres)	4.25
DRILLED-DEPTH (metres)	4.25
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	HENSON PARK
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	2.50
SALINITY	
YIELD	

Site Details (top)

REGION	10 - SYDNEY SOUTH COAST
RIVER-BASIN	
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6246916.00
EASTING	329742.00
LATITUDE	33 54' 16"
LONGITUDE	151 9' 31"
GS-MAP	

Form-A (top)

COUNTY	CUMBERLAND
PARISH	PETERSHAM
PORTION-LOT-DP	423//1035319

Licensed (top)

COUNTYCUMBERLANDPARISHPETERSHAMPORTION-LOT-DP423 1035319

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD ID (mm) (mm) INTERVAL	DETAIL
1		Hole	Hole	0.00	4.25	100	Auger - Solid Flight
1	1	Casing	PVC Class 18	0.00	1.25	50	Screwed; Seated on Bottom; End cap
1	1	Opening	Slots - Horízontal	1.25	4.25	50	PVC Class 18; Casing - Machine Slotted; SL: 35mm; A: 4mm; Screwed
1		Annulus	Waterworn/Rounded	1.25	4.25		Graded; GS: 2- 2.5mm

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	ROCK- CAT- DESC	S⊷ W₌L	D D L	YIELD	TEST-HOLE- DEPTH (metres)	DURATION	SALINITY	
2.50	4.25	1.75		2.50						

Drillers Log (top)

http://is2.dnr.nsw.gov.au/proxy/dipnr/gwworks?GWWID=GW111687

i

į

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	1,90	1.90	FILL, SANDY GRAVEL DARK, SOFT	
1.90	2.70	0.80	SILTY CLAY, RED/ORANGE, STIFF	
2.70	3.00	0.30	SILTY CLAY, RED, ORANGE, SOFT	
3.00	4.25	1.25	SILTY CLAY BEIGE, VERY MOIST, SOFT	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interproting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Friday, October 11, 2013

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW110122

Works Details (top)

GW110122
10BL600053
MONITORING BORE
MONITORING BORE
Well
Auger
Private
2006-01-16
3.50
3.50
RAILCORP N S W
va
2.50

Site Details (top)

REGION	10 - SYDNEY SOUTH COAST
RIVER-BASIN	
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6245833.00
EASTING	329500.00
LATITUDE	33 54' 51"
LONGITUDE	151 9' 20"
GS-MAP	

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	PETERSHAM
PORTION-LOT-DP	1 1042838

Licensed (top)

COUNTY CUMBERLAND PARISH PETERSHAM PORTION-LOT-DP 1 1042838

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD ID INTER (mm) (mm)	VAL DETAIL
1		Hole	Hole	0.00	3.50	150	Auger
1	1	Casing	P.V.C.	0.00	0.50	50	
1	1	Opening	Screen	0,50	3.50	50	PVC; A: .2mm

Water Bearing Zones (top)

no details

Drillers Log (top)

FROM TO THICKNESS DESC GEO-MATERIAL COMMENT

0.00 3.50 3.50 CLAY

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Thursday, November 7, 2013

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW110121

Works Details (top)

GROUNDWATER NUMBER	GW110121
LIC-NUM	10BL600053
AUTHORISED-PURPOSES	MONITORING BORE
INTENDED-PURPOSES	MONITORING BORE
WORK-TYPE	Well
WORK-STATUS	
CONSTRUCTION-METHOD	Auger
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2006-01-16
FINAL-DEPTH (metres)	3.50
DRILLED-DEPTH (metres)	3.50
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	RAILCORP N S W
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	3.00
SALINITY	
YIELD	

Site Details (top)

REGION 10 - SYDNEY SOUTH COAST **RIVER-BASIN AREA-DISTRICT** CMA-MAP **GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6245840.00 EASTING 329454.00 33 54' 51" LATITUDE LONGITUDE 151 9' 19" **GS-MAP**

Page 2 of 2

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	PETERSHAM
PORTION-LOT-DP	1 1042838

Licensed (top)

COUNTY	CUMBERLAND
PARISH	PETERSHAM
PORTION-LOT-DP	1 1042838

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	3.50	150			Auger
1	1	Casing	P.V.C.	0.00	0.50	50			
1	1	Opening	Screen	0.50	3.50	50			PVC; A: .2mm

Water Bearing Zones (top)

no details

Drillers Log (top)

FROM TO THICKNESS DESC GEO-MATERIAL COMMENT

0.00 3.50 3.50 CLAY

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

APPENDIX I

SITE PHOTOGRAPHS

SITE PHOTOGRAPHS

Client:	E & D Danias Pty Ltd
Project:	Remediation & Validation
Site Location:	182, 184, 188, 190 & 190A Victoria Street & 18-26 & 28 Faversham Street, Marrickville NSW
Job No.:	ES5611-2
Photos Taken By:	MS

Photograph Nº 1

View of: unsealed area in vicinity of BH11 & BH12 Looking east Inspected on 16.10.13

Photograph Nº 3

View of:unsealed car park area located downgradient of the smash repairs Looking south

Photograph Nº 5

View of: car park in the south eastern corner of the site Looking north Inspected on 16.10.2013

Photograph Nº 2

View of: unsealed access way & BH9 & BH10 Looking west Inspected on 16.10.13

Photograph Nº 4

View of:Gorilla Constructions, awning & concrete surfaces Looking east

Photograph Nº 6

View of: car park in the south eastern corner of the site Looking west

SITE PHOTOGRAPHS

Client:	E & D Danias Pty Ltd
Project:	Remediation & Validation
Site Location:	182, 184, 188, 190 & 190A Victoria Street & 18-26 & 28 Faversham Street, Marrickville NSW
Job No.:	ES5611-2
Photos Taken By:	MS

Photograph Nº 7

View of:unsealed car park area down-gradient of smash repairs Looking south

Photograph Nº 9

View of:small warehouse part of gorilla constructions Looking south west

Photograph Nº 11

View of: car park in the western portion of the site Looking west Inspected on 16.10.2013

Photograph Nº 8

View of:unsealed car park area down-gradient of smash repairs Looking west

Photograph Nº 10

View of: car park Looking east Inspected on 16.10.2013

Photograph Nº 12

View of: car park, office building and BH14/GW1 Looking south west Inspected on 16.10.2013

APPENDIX J

REGULATORY CRITERIA

Analyte	ANZECC 2000 Freshwater 95%	ANZECC 2000 Freshwater 90%	ANZECC 2000 Marine Water 95%	ANZECC 2000 Marine Water 90%	ANZECC 2000 Recreational Water & Aesthetics	ADWG 2011 Health	Dutch Intervention Value
HEAVY METALS							
Arsenic (III)	24	94	2.3ª	ID	50	10	
Arsenic (V)	13	42	4.5 ^ª	ID	50	10	
Cadmium	0.2	0.4	5.5	14	5	2	
Chromium (III)	3.3ª	ID	27.4	48.6	-	-	
Chromium (VI)	1	6	4.4	20	50	50	
Copper	1.4	1.8	1.3	3	1,000	2,000	
Lead	3.4	5.6	4.4	6.6	50	10	
Mercury (Inorganic)	0.6	1.9	0.4	0.7	-	-	
Mercury (Total)	-	-	-	-	1	1	
Nickel	11	13	70	200	100	20	
Zinc	8	15	15	23	5,000	-	
TOTAL PETROLEUM HYDROCARBONS							
(C6-C36)	-	-	-	-	-	-	600
BTEX							
Benzene	950	1,300	700	900	10	1	
Toluene	180 ^ª	230ª	180ª	ID	-	800	
Ethyl Benzene	80ª	110 ^a	5ª	ID	-	300	
Xylene (m)	75 ^ª	100 ^a	75 ^ª	ID	-	-	
Xylene (o)	350	470	350	ID	-	-	
Xylene (p)	200	250	200	ID	-	-	
Total Xylene	-	-	-	-	-	600	
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)							
Anthracene	0.4 ^a	1.5ª	0.4 ^a	1.5ª	-	-	
	0.4 0.2ª	0.4ª	0.4 0.2ª	0.4ª	- 0.01	- 0.01	
Benzo(a)pyrene	0.2 1.4ª	0.4 1.7 ^a	0.2 1.4 ^a	0.4 1.7ª			
Fluoranthene					-	-	
Naphthalene	16	37	70	90	-	-	
Phenanathrene	2ª	4 ^a	2 ^a	4 ^a	-	-	
PAH Total	-	-	-	-	-	0.01	
NON-METALLIC INORGANICS							
Cyanide	7	11	4	7	100	80	
CHLOROBENZENES							
НСВ	0.1ª	0.2ª	0.1ª	0.2 ^b	-	0.7	
ORGANOCHLORINE PESTICIDES (OCP)							
Aldrin	0.001 ^a	ID	0.003ª	ID	1	0.3	
Chlordane	0.08	0.14	0.001ª	ID	6	2	
DDE	0.03 ^a	ID	0.0005ª	ID	-	-	
DDT	0.01	0.02	0.0004 ^a	ID	3	9	
Dieldrin	0.01ª	ID	0.01ª	ID	1	0.3	
Endrin	0.02	0.04	0.008	0.01	1	-	
Endosulfan	0.2	0.6	0.01	0.02	40	20	
Heptachlor	0.09	0.25	0.004 ^a	ID	3	0.3	
Lindane	0.2	0.4	0.007 ^a	ID	10	10	
Methoxychlor	0.005ª	ID	0.004ª	ID	-		
ORGANOPHOSPHATE PESTICIDES (OPP)							
Azinphos-methyl	0.02	0.05	0.001 ^a	ID	10	30	
Chlorpyrifos	0.01	0.11	0.009	0.04	2	10	
Dichlorvos	-	-	-	-	20	5	
Dimethoate	0.15	0.2	0.15ª	ID	100	7	
Diazinon	0.01	0.2	0.01 ^a	ID	10	4	
Fenitrothion	0.2	0.3	0.001 ^a	ID	20	7	
Malathion	0.05	0.2	0.05 ^a	ID	-	-	1
Parathion	0.004	0.01	0.004 ^a	ID	30	20	
Bromofos	-	-	-	-	20	-	1
Methidathion	-	-	-	-	60	6	
Ethion		-			6	4	
	-	-	-	-	U	4	
POLYCHLORINATED BIPHENYLS (PCBs)	2						
Arochlor 1016	0.001 ^a	ID	0.009 ^a	ID	-	-	
Arochlor 1221	1.0 ^a	ID	1.0 ^ª	ID	-	-	
Arochlor 1232	0.3ª	ID	0.3 ^a	ID	-	-	
Arochlor 1242	0.6	1.0	0.3a	ID	-	-	
Arochlor 1248	0.03ª	ID	0.03ª	ID	-	-	
Arochlor 1254	0.03	0.07	0.01 ^a	ID	-	-	
Arochlor 1260	25ª	ID	ID	ID	-	-	
Arochlor 1262	50 ^a	ID	ID	ID	-	-	
Arochlor 1268	50 ^a	ID	ID	ID	-	-	1
Total PCB	ID	ID	ID	ID	0.1	-	
CHLORINATED ALKANES/ALKENES							
1.1-Dichloroethane	90 ^ª	ID	250°	ID	-		
				ID	-	- 3	
1,2-Dichloroethane	1,900 ^a	ID	1,900ª				
1,1,1-Trichloroethane	270 ^a	ID	270 ^a	ID	-	-	
1,1,2-Trichloroethane	6,500	7,300	1,900	5,800	-	-	1

Analyte	ANZECC 2000 Freshwater 95%	ANZECC 2000 Freshwater 90%	ANZECC 2000 Marine Water 95%	ANZECC 2000 Marine Water 90%	ANZECC 2000 Recreational Water & Aesthetics	ADWG 2011 Health	Dutch Intervention Value
Chloroethene	100 ^ª	ID	100 ^a	ID	-	-	
1,1-Dichloroethene	700 ^a	ID	700 ^a	ID	-	30	
1,2-Dichloroethene	-	-	-	-	-	60	
1,1,2-Trichloroethene	330ª	ID	330ª	ID	-	-	
Tetrachloroethene	70 ^a	ID	70 ^a	ID	-	50	
Vinyl chloride	-	-	-	-	-	0.3	
PHENOLS							
Phenol	320	600	400	520	-	-	
2-chlorophenol	340*	630	340ª	ID	-	300	
4-chlorophenol	220	280	220ª	ID	-	-	
2,4-dichlorophenol	120*	200	120ª	ID	-	200	
2,4,6-trichlorophenol	3*	40	3ª	ID	10	20	
2,3,4,6-tetrachlorophenol	10*	25	10 ^a	ID	1	-	
Pentachlorophenol	3.6*	17	22	33	10	10	

 Notes:

 All units for trigger values are in µg/L

 a =
 Interim working values (low reliability) in the absence of reliable trigger values (as referenced from the ANZECC 2000 Guidelines - Section 8.3.7).

 ID =
 Insufficient Data to derive a reliable trigger value

 * =
 99% protection level for slightly to moderately disturbed ecosystem value (as referenced from ANZECC 2000 Guidelines)

	Residential A	Residential B	Recreational C	Commercial / Industrial D
	Metalso	& Inorganics		in was the D
Arsenic (total)	100	500	300	3,000
Beryllium	60	90	90	500
Boron	4,500	40,000	20,000	300,000
Cadmium	20	150	90	900
Chromium (VI)	100	500	300	3,600
Cobalt	100	600	300	4,000
Copper	6,000	30,000	17,000	240,000
Lead	300	1,200	600	1,500
Manganese	3,800	14,000	19,000	60,000
Mercury (inorganic)	40	120	80	730
Methyl mercury	10	30	13	180
Nickel	400	1,200	1,200	6,000
Selenium	200	1,400	700	10,000
Zinc	7,400	60,000	30,000	400,000
Cyanide (free)	250	300	240	1,500
	Polycyclic Aro	matic Hydrocarbons	11	
Carcinogenic PAHs (as BaP TEQ)	3	4	3	40
Total PAHs	300	400	300	4,000
	Р	henols	II	
Phenols	3,000	45,000	40,000	240,000
Pentachlorophenol	100	130	120	660
Cresols	400	4,700	4,000	25,000
	Organoch	lorine Pesticides	II	
DDT+DDD+DDE	240	600	400	3,600
Aldrin & Dieldrin	6	10	10	45
Chlordane	50	90	70	530
Endosulfan	270	400	340	2,000
Endrin	10	20	20	100
Heptachlor	6	10	10	50
НСВ	10	15	10	80
Methoxychlor	300	500	400	2,500
Mirex	10	20	20	100
Toxaphene	20	30	30	160
	Не	erbicides	11	
2,4,5-T	600	900	800	5,000
2,4-D	900	1,600	1,300	9,000
МСРА	600	900	800	5,000
МСРВ	600	900	800	5,000
Mecoprop	600	900	800	5,000
Picloram	4,500	6,600	5,700	35,000
		r Pesticides		,
Atrazine	320	470	400	2,500

Table 1A(1) Health-based Investigation Levels (mg/kg)

Chlorpyrifos	160	340	250	2,000
Bifenthrin	600	840	730	4,500
	Othe	r Organics		
PCBs	1	1	1	7
PBDE Flame Retardants (Br1-Br9)	1	2	2	10

	HSLA & H	SL B Low – hi⊱	HSL A & HSL B Low – high density residential	dential	HSL	HSL C recreational / open space	il / open spac	Ð	HSL	D Commerci	HSL D Commercial / Industrial		
													Soil saturation
													concentration
CHEMICAL	0 m to <1 m	0 m to <1 m 1 m to <2 m 2 m to <4m	2 m to <4m	4 m+	0 m to <1 m	1 m to <2 m 2 m to <4m	2 m to <4m	4 m+	0 m to <1 m 🔅	1 m to <2 m	2 m to <4m	4 m+	(Cast)
						SAND							
Toluene	160	220	310	540	NL	NL	NL	NL	NL	NL	NL	NL	560
Ethylbenzene	55	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	64
Xylenes	40	60	95	170	NL	NL	NL	NL	230	NL	NL	NL	300
Naphthalene	c	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	6
Benzene	0.5	0.5	0.5	0.5	NL	NL	NL	NL	ĉ	c	c	ŝ	360
F1	45	70	110	200	NL	NL	NL	NL	260	370	630	NL	950
F2	110	240	440	NL	NL	NL	NL	NL	NL	NL	NL	NL	560
						SILT							
Toluene	390	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	640
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	69
Xylenes	95	210	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	330
Naphthalene	4	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	10
Benzene	0.6	0.7	1	2	NL	NL	NL	NL	4	4	9	10	440
F1	40	65	100	190	NL	NL	NL	NL	250	360	590	NL	910
F2	230	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	570
						CLAY							
Toluene	480	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	630
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	68
Xylenes	110	310	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	330
Naphthalene	ß	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	10
Benzene	0.7	1	2	с	NL	NL	NL	NL	4	9	6	20	430
F1	50	06	150	290	NL	NL	NL	NL	310	480	NL	NL	850
F2	280	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	560

Table 1A(3) Soil HSLs for vapour intrusion (mg/kg)

[]	
(mg/l	
(4) Groundwater HSLs for vapour intrusion (n	
Table 1A	

			,							
		HSL A & HSL B			HSL C			HSL D		
	Low - high den	gh density residential	dential	Recre	Recreational / open space	space	Com	Commercial / industrial	strial	
										Solubility
Chemical	2 m to <4 m 4 m to	4 m to <8 m	8 m+	2 m to <4 m	2 m to <4 m 4 m to <8 m	8 m+	2 m to <4 m 4 m to <8 m	4 m to <8 m	8 m+	Limit
				S	SAND					
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17
Benzene	0.8	0.8	0.9	NL	NL	NL	5	5	5	59
F1	1	1	1	NL	NL	NL	6	9	7	9.0
F2	1	1	1	NL	NL	NL	NL	NL	NL	3.0
					SILT					
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17
Benzene	4	5	D	NL	NL	NL	30	30	30	59
F1	9	9	9	NL	NL	NL	NL	NL	NL	9.0
F2	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.0
				U	CLAY					
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17
Benzene	5	5	5	NL	NL	NL	30	30	35	59
F1	NL	NL	NL	NL	NL	NL	NL	NL	NL	9.0
F2	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.0

To obtain F1 substract the sum of BTEX concentrations from the C6 - C10 fraction To obtain F2 substract naphthalene from the >C6 - C10 fraction

	Zn addeo	l contamina	ant limits (ACL, mg ad	ded contam	ninant/kg)	
		Area	as of ecolo	gical signifi			
pH ^a				CEC ^b (cmc	ol/kg)		
		5	10	20	30	40	60
	4.0	15	20	20	20	20	20
	4.5	20	25	25	25	25	25
	5.0	30	40	40	40	40	40
	5.5	40	60	60	60	60	60
	6.0	50	90	90	90	90	90
	6.5	50	90	130	130	130	130
	7.0	50	90	130	190	190	190
	7.5	50	90	130	210	260	280
		Urban r	esidential/	/public ope	n space ¹		
pH ^a				CEC ^b (cmc	ol/kg)		
		5	10	20	30	40	60
	4.0	70	85	85	85	85	85
	4.5	100	120	120	120	120	120
	5.0	130	180	180	180	180	180
	5.5	180	270	270	270	270	270
	6.0	230	400	400	400	400	400
	6.5	230	400	590	590	590	590
	7.0	230	400	700	880	880	880
	7.5	230	400	700	960	1200	1300
			Commerci	al/Industria	al		
рН ^а				CEC ^b (cmc	ol/kg)		
		5	10	20	30	40	60
	4.0	110	130	130	130	130	130
	4.5	150	190	190	190	190	190
	5.0	210	290	290	290	290	290
	5.5	280	420	420	420	420	420
	6.0	360	620	620	620	620	620
	6.5	360	620	920	920	920	920
	7.0	360	620	1100	1400	1400	1400
	7.5	360	620	1100	1500	1900	2000

Table 1B(1) Soil-specific added contaminant limits for aged zinc in soil

- 1: Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
- 2: Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
- 3: The EIL is calculated from summing the ACL and the ABC.
- a: pH measured using the CaCl2 method (Rayment & Higginson 1992).
- b: CEC measured using the silver thiourea method (Chabra et al. 1972).

(Cu added conta	minant limits (A	ACL, mg added o	contaminant/kg	;)		
	1	Aeras of ecolog	ical significance				
		CEC (cmol/	/kg) ^a based				
5	10	20	30	40	60		
30	65	70	70	75	80		
		рН ^ь k	based				
4.5	5.5	6	6.5	7.5	8		
20	45	65	90	190	270		
	Urb	an residential/	public open spa	ce ¹			
CEC (cmol/kg) ^a based							
5	10	20	30	40	60		
95	190	210	220	220	230		
pH ^b based							
4.5	5.5	6	6.5	7.5	8		
60	130	190	280	560	800		
Commercial/industrial							
CEC (cmol/kg) ^a based							
5	10	20	30	40	60		
140	280	300	320	330	340		
		pH ^b k	based				
4.5	5.5	6	6.5	7.5	8		
85	190	280	400	830	1200		

Table 1B(2): Soil-specific added contaminant limits for aged copper in soil

- 1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
- 2. The lower of the CEC or the pH-based ACLs for the land use and soil conditions is the ACL to be used.
- 3. Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
- 4. The EIL is calculated from summing the ACL and the ABC.
- a = CEC measured using the silver thiourea method (Chabra et al. 1972)
- b = pH measured using the CaCl2 method (Rayment & Higginson 1992)

		Added contaminar	nt limits (mg aded con various land uses	ntaminant/kg) for
CHEMICAL	Clay content (%clay)	Areas of ecological significance	Urban residential and public open space	Commercial and industrial
	1	60	190	310
Chromium	2.5	80	250	420
- 111	5	100	320	530
	≥10	130	400	660
	CEC ^a (cmol _c /kg)	Areas of ecological significance	Urban residential and public open space	Commercial and industrial
NP-1-1	5	5	30	55
Nickel	10	30	170	290
	20	45	270	460
	30	60	350	600
	40	70	420	730
	60	95	560	960

Table 1B(3): Soil-specific added contaminant limits for aged chromium III and nickel in soil

Notes:

Urban residential/public open space is broadly equivalent to the HIL A, HIL B

1. and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

2. Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

3. The EIL is calculated from summing the ACL and the ABC.

a = CEC measured using the silver thiourea method (Chabra et al. 1972)

Table 1B(4): Generic added contaminant limits for lead in soils irrespective of their physicochemical properties

Pb added	contaminant limit (ACL, r	ng added contaminant/kg) f	for various land uses
CHEMICAL	Area of ecological significance	Urban residential and public open space	Commercial and industrial
LEAD	470	1100	1800

Notes:

1.	Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.
2.	Aged values are applicable to lead contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
•	

3. The EIL is calculated from summing the ACL and the ABC.

Table 1B(6): ESLs for TPH fractions F1 – F4, BTEX and benzo(a)pyrene in soil

			ESLs (mg/kg dry soil)	
CHEMICAL	Soil texture	Areas of ecological significance	Urban residential and public open space	Commercial and industrial
F1 C6-C10	Coarse/	125*	180*	215*
F2 >C10-C16	Fine	25*	120*	170*
F3 >C16-C34	Coarse	-	300	1700
	Fine	-	1300	2500
F4 >C34-C40	Coarse	-	2800	3300
	Fine	-	5600	6600
Benzene	Coarse	10	50	75
	Fine	10	65	95
Toluene	Coarse	10	85	135
	Fine	65	105	135
Ethylbenzene	Coarse	1.5	70	165
	Fine	40	125	185
Xylenes	Coarse	10	105	180
	Fine	1.6	45	95
Benzo(a)pyrene	Coarse	0.7	0.7	0.7
	Fine	0.7	0.7	0.7

Notes:

ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

'-' indicates that insufficient data was available to derive a value.

To obtain F1, subtract the sum of BTEX concentrations from C6-C10 fraction and subtract naphthalene from >C10-C16 to obtain F2.

		Management Limits1 (mg/kg dry soil		
TPH fraction	Soil texture	Residential, parkland and public open space	Commercial and industrial	
F1 ² C6- C10	Coarse	700	700	
	Fine	800	800	
F2 ² >C10-C16	Coarse	1000	1000	
	Fine	1000	1000	
F3 >C16-C34	Coarse	2500	3500	
	Fine	3500	5000	
F4 >C34-C40	Coarse	10 000	10 000	
	Fine	10 000	10 000	

Table 1 B(7): Management Limits for TPH fractions F1 - F4 in soil

	NEPM Groundwater Investigation Levels (μg/L)			
Analyte	Fresh Waters	Marine Waters	, Drinking water)	
HEAVY METALS			,	
Aluminium, Al pH>6.5	55	-	-	
Antimony	-	-	3	
Arsenic (III)	24	-	10	
Arsenic (V)	13	-	10	
Barium	-	-	2,000	
Beryllium	-	-	60	
Boron	370	-	4,000	
Cadmium	0.2	0.7	2	
Chromium (III)	-	27	-	
Chromium (VI)	1	4.4	50	
Cobalt	-	1	-	
Copper	1.4	1.3	2,000	
Lead	3.4	4.4	10	
Manganese	1,900	-	500	
Mercury (Inorganic)	-	-	-	
Mercury (Total)	0.06	0.1	1	
Molybdenum	-	-	50	
Nickel	11	7	20	
Selenium (Total)	5	-	10	
Silver	0.05	1.4	100	
Tributyl tin (as Sn)	-	0.006	-	
Tributyl tin oxide	-	-	1	
Uranium	-	-	17	
Vanadium	-	100	-	
Zinc	8	15	-	
NON-METALLIC INORGANICS				
Ammonia (as NH3-N at pH 8)	900	91	-	
Bromate	-	-	20	
Chloride	-	-	-	
Cyanide (as un-ionised Cn)	7	4	80	
Fluoride	-	-	1,500	
Hydrogen sulphide (un-ionised H2S-S)	1	-	-	
lodide	-	-	500	
Nitrate (as NO3)	Refer to guideline	Refer to guideline	-	
Nitrite (as NO2)	Refer to guideline	Refer to guideline	3,000	
Nitrogen	Refer to guideline	Refer to guideline	-	
Phosphorus	Refer to guideline	Refer to guideline	-	
Sulphate (as SO4)	-	-	500,000	
Organic alcohols/other organics				
Ethanol	1,400	-	-	
Ethylenediamine tetra-acetic acid (EDTA)	-	-	250	
Formaldehyde	-	-	500	

	NEPM Groundwater Investigation Levels (µg/L)			
Analyte	Fresh Waters	Marine Waters	Drinking water)	
Nitrilotriacetic acid	-	-	200	
ANILINES				
Aniline	8	-	-	
2,4-Dichloroaniline	7	-	-	
3,4-Dichloroaniline	3	150	-	
CHLORINATED ALKANES/ALKENES				
Dichloromethane	-	-	4	
Trichloromethane (chloroform)	-	-	3	
Trihalomethanes (total)	-	-	250	
Tetrachloromethane (carbon tetrachloride)	-	-	3	
1,2-Dichloroethane	-	-	3	
1,1,2-Trichloroethane	6,500	1,900	-	
Hexachloroethane	290	-	-	
Chloroethene (Vinyl chloride)	-	-	0.3	
1,1-Dichloroethene	-	-	30	
1,2-Dichloroethene	-	-	60	
Tetrachloroethene	-	-	50	
Chlorinate Benzenes				
Chlorobenzene	-	-	300	
1,2-Dichlorobenzene	160	-	1,500	
1,3-Dichlorobenzene	260	-	-	
1,4-Dichlorobenzene	60	-	40	
1,2,3-Trichlorobenzene	3	-	30 for	
1,2,4-Trichlorobenzene	85	20	individual or	
1,3,5-Trichlorobenzene	-	-	total	
POLYCHLORINATED BIPHENYLS (PCBs)				
Arochlor 1242	0.3	-	-	
Arochlor 1254	0.01	-	-	
Other Chlorinated Compounds				
Epichlorohydrin	-	-	100	
Hexachlorobutadiene	-	-	0.7	
Monochloramine	-	-	3	
Monocyclic Aromatic Hydrocarbons				
Benzene	950	500	1	
Toluene	-	-	800	
Ethyl Benzene	-	-	300	
Xylene (o)	350	-	600	
Xylene (p)	200	-	000	
Styrene (Vinyl benzene)	-	-	30	
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)				
Benzo(a)pyrene	-	-	0.01	
Naphthalene	16	50	-	
PHENOLS				
Phenol	320	400	-	

	NEPM Groundwater Investigation Levels (µg/L)			
Analyte	Fresh	Marine	Drinking	
2-chlorophenol	Waters 340	Waters	water) 300	
4-chlorophenol	220	_	-	
2,4-dichlorophenol	120	-	200	
2,4,6-trichlorophenol	3		200	
2,3,4,6-tetrachlorophenol	10	_	-	
Pentachlorophenol	3.6	11	10	
2,4-Dinitrophenol	45	-	-	
PHTHALATES				
Dimethylphthalate	3,700	-	-	
Diethylphthalate	1,000	-	_	
Dibutylphthalate	10	_	_	
Di(2-ethylhxyl) phthalate	-	-	10	
PESTICIDES				
Acephate	-	-	8	
Aldicarb	_	-	4	
Aldrin plus Dieldrin	_	-	0.3	
Ametryn	_	-	70	
Amitraz		-	9	
Amitrole	-	_	0.9	
Asulam	_	-	70	
Atrazine	13	-	20	
Azinphos-methyl		-	30	
Benomyl		-	90	
Bentazone	-	-	400	
Bioresmethrin	-	-	100	
Bromacil	-	-	400	
Bromoxynil	-	-	10	
Captan	-	-	400	
Carbaryl	-	-	30	
Carbendazim (Thiophanate-methyl)	-	-	90	
Carbofuran	0.06	-	10	
Carboxin	-	-	300	
Carfentrazone-ethyl	-	-	100	
Chlorantraniliprole	-	-	6,000	
Chlordane	0.03	-	2	
Chlorfevinphos	-	-	2	
Chlorothalonil	-	-	50	
Chlorpyrifos	0.01	0.009	10	
Chlorsulfuron	-	-	200	
Clopyralid	-	-	2,000	
Cyfluthrin, Beta-Cyfluthrin	-	-	50	
Cypermethrin isomers	-	-	200	
Cyoridinil	-	-	90	
1,3-Dichloropropene	-	-	100	

	NEPM Groundwater Investigation Levels (μg/L)			
Analyte	Fresh Waters	Marine Waters	Drinking water)	
2,2-DPA	-	-	500	
2,4-D [2,4-dichlorophenoxy acetic acid]	280	-	30	
DDT	0.006	-	9	
Deltramethrin	-	-	40	
Diazinon	0.01	-	4	
Dicamba	-	-	100	
Dichloroprop	-	-	100	
Dichlorvos	-	-	5	
Dicofol	-	-	4	
Diclofop-methyl	-	-	5	
Dieldrin plus Aldrin	-	-	0.3	
Diflubenzuron	-	-	70	
Dimethoate	0.15	-	7	
Diquat	1.4	-	7	
Disulfoton	-	-	4	
Diuron	-	-	20	
Endosulfan	0.03	0.005	20	
Endothal	-	-	100	
Endrin	0.01	0.004	-	
EPTC	-	-	300	
Esfenvalerate	-	-	30	
Ethion	-	-	4	
Ethoprophos	-	-	1	
Etridiazole	-	-	100	
Fenamiphos	-	-	0.5	
Fenarimol	-	-	40	
Fenitrothion	0.2	-	7	
Fenthion	-	-	7	
Fenvalerate	-	-	60	
Fipronil	-	-	0.7	
Flamprop-methyl	-	-	4	
Fluometuron	-	-	70	
Fluproponate	-	-	9	
Glyphosate	370	-	1,000	
Haloxyfop	-	-	1	
Heptachlor	0.01	-	-	
Heptachlor epoxide	-	-	0.3	
Hexazinone	-	-	400	
Imazapyr	-	-	9,000	
Iprodione	-	-	100	
Lindane (γ-HCH)	0.2	-	10	
Malathion	0.05	-	70	
Mancozeb (as ETU, ethylene thiourea)	-	-	9	
МСРА	-	-	40	

	NEPM Groundwater Investigation Levels (µg/L)			
Analyte	Fresh Waters	Marine Waters	Drinking water)	
Metaldehyde	-	-	20	
Metham (as methylisothiocyanate, MITC)	-	-	1	
Methidathion	-	-	6	
Methiocarb	-	-	7	
Methomyl	3.5	-	20	
Methyl bromide	-	-	1	
Metiram (as ETU, ethylene thiourea)	-	-	9	
Metolachlor/s-Metolachlor	-	-	300	
Metribuzin	-	-	70	
Metsulfuron-methyl	-	-	40	
Mevinphos	-	-	6	
Molinate	3.4	-	4	
Napropamide	-	-	400	
Nicarbazin	-	-	1,000	
Norflurazon	-	-	50	
Omethoate	-	-	1	
Oryzalin	-	-	400	
Oxamyl	-	-	7	
Paraquat	-	-	20	
Parathion	0.004	-	20	
Parathion methyl	-	-	0.7	
Pebulate	-	-	30	
Pendimethalin	-	-	400	
Pentachlorophenol	-	-	10	
Permethrin	-	-	200	
Picloram	-	-	300	
Piperonylbutoxide	-	-	600	
Pirimicarb	-	-	7	
Pirimiphos methyl	-	-	90	
Polihexanide	-	-	700	
Profenofos	-	-	0.3	
Propachlor	-	-	70	
Propanil	-	-	700	
Propargite	-	-	7	
Proparzine	-	-	50	
Propiconazole	-	-	100	
Propyzamide	-	-	70	
Pyrasulfatole	-	-	40	
Pyrazophos	-	-	20	
Pyroxsulam	-	-	4,000	
Quintozene	-	-	30	
Simazine	3.2	-	20	
Spirotetramat	-	-	200	
Sulprofos	-	-	10	

	NEPM G	roundwater In	
Analyte	Fresh Waters	Levels (µg/L Marine Waters) Drinking water)
2,4,5-T	36	-	100
Tebuthiuron	2.2	-	-
Temephos	-	0.05	400
Terbacil	-	-	200
Terbufos	-	-	0.9
Terbuthylazine	-	-	10
Terbutryn	-	-	400
Thiobencarb	2.8	-	40
Thiometon	-	-	4
Thiram	0.01	-	7
Toltrazuril	-	-	4
Toxafene	0.1	-	-
Triadimefon	-	-	90
Trichlorfon	-	-	7
Triclopyr	-	-	20
Trifluralin	2.6	-	90
Vernolate	-	-	40
SURFACTANTS			
Linear alkylbenzenesulfonates (LAS)	280	-	-
Alcohol ethoxylated sulfate (AES)	650	-	-
Alcohol ethoxylated surfactants (AE)	140	-	-

Table 7: Health screening levels for asbestos contamination in soil

	Health Screening Level (w/w)			
Form of asbestos	Residential A ¹	Residential B ²	Recreational C ³	Commercial/ Industrial D ⁴
Bonded ACM	0.01%	0.04%	0.02%	0.05%
FA and AF5 (friable	0.001%			
asbestos)	0.001%			
All forms of asbestos		No visible asbestos for surface soil		

Notes:

1. Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.

2. Residential B with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.

4. Commercial/industrial D includes premises such as shops, offices, factories and industrial sites.

The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures (refer Section 4.10). This screening level is not applicable to free fibres.

Table 1: Contaminant threshold values (CT1 & CT2) for classifying waste by chemical assessment without the leaching (TCLP) test

For disposal requirements for organic and inorganic chemical contaminants not listed below, contact DECC. Aluminium, barium, boron, chromium (0 and III oxidation states), cobalt, copper, iron, manganese, vanadium and zinc have not been listed with values in this table and need not be tested for.

	Maximum values of specific contaminant concentration (SCC) for classification without TCLP		
	General solid waste ¹	Restricted solid waste	
Contaminant	CT1 (mg/kg)	CT2 (mg/kg)	CAS Registry Number
Arsenic	100	400	
Benzene	10	40	71-43-2
Benzo(a)pyrene ²	0.8	3.2	50-32-8
Beryllium	20	80	
Cadmium	20	80	
Carbon tetrachloride	10	40	56-23-5
Chlorobenzene	2000	8000	108-90-7
Chloroform	120	480	67-66-3
Chlorpyrifos	4	16	2921-88-2
Chromium (VI) ³	100	400	
m-Cresol	4000	16000	108-39-4
o-Cresol	4000	16000	95-48-7
p-Cresol	4000	16000	106-44-5
Cresol (total)	4000	16000	1319-77-3
Cyanide (amenable) ⁴	70	280	
Cyanide (total)	320	1280	
2,4-D	200	800	94-75-7
1,2-Dichlorobenzene	86	344	95-50-1
1,4-Dichlorobenzene	150	600	106-46-7
1,2-Dichloroethane	10	40	107-06-2
1,1-Dichloroethylene	14	56	75-35-4
Dichloromethane	172	688	75-09-2
2,4-Dinitrotoluene	2.6	10.4	121-14-2
Endosulfan⁵	60	240	See below ⁵
Ethylbenzene	600	2400	100-41-4
Fluoride	3000	12000	
Fluroxypyr	40	160	69377-81-7

	<i>contaminant</i> (SCC) for class	ues of <i>specific</i> <i>concentration</i> ification without LP	
	General solid waste ¹	Restricted solid waste	
Contaminant	CT1 (mg/kg)	CT2 (mg/kg)	CAS Registry Number
Lead	100	400	
Mercury	4	16	
Methyl ethyl ketone	4000	16000	78-93-3
Moderately harmful pesticides ⁶ (total)	N/A ⁷	N/A ⁷	See below ⁶
Molybdenum	100	400	
Nickel	40	160	
Nitrobenzene	40	160	98-95-3
C6-C9 petroleum hydrocarbons	N/A ⁷	N/A ⁷	
C10-C36 petroleum hydrocarbons	N/A ⁷	N/A ⁷	
Phenol (non-halogenated)	288	1152	108-95-2
Picloram	60	240	1918-02-1
Plasticiser compounds ⁸	20	80	See below ⁸
Polychlorinated biphenyls	N/A ⁷	N/A ⁷	1336-36-3
Polycyclic aromatic hydrocarbons (total)	N/A ⁷	N/A ⁷	
Scheduled chemicals	N/A ⁷	N/A ⁷	
Selenium	20	80	
Silver	100	400	
Styrene (vinyl benzene)	60	240	100-42-5
Tebuconazole	128	512	107534-96-3
1,2,3,4- Tetrachlorobenzene	10	40	634-66-2
1,1,1,2-Tetrachloroethane	200	800	630-20-6
1,1,2,2-Tetrachloroethane	26	104	79-34-5
Tetrachloroethylene	14	56	127-18-4
Toluene	288	1152	108-88-3
1,1,1-Trichloroethane	600	2400	71-55-6
1,1,2-Trichloroethane	24	96	79-00-5
Trichloroethylene	10	40	79-01-6
2,4,5-Trichlorophenol	8000	32000	95-95-4
2,4,6-Trichlorophenol	40	160	88-06-2

	contaminant	ues of <i>specific</i> concentration fication without LP	
	General Restricted solid waste		
Contaminant	CT1 (mg/kg)	CT2 (mg/kg)	CAS Registry Number
Triclopyr	40	160	55335-06-3
Vinyl chloride	4	16	75-01-4
Xylenes (total)	1000	4000	1330-20-7

Notes

- 1. Values are the same for both general solid waste (putrescible) and general solid waste (non-putrescible).
- 2. There may be a need for the laboratory to concentrate the sample to achieve the TCLP limit value for benzo(a)pyrene with confidence.
- 3. These limits apply to chromium in the +6 oxidation state only.
- 4. Analysis for cyanide (amenable) is the established method for assessing potentially leachable cyanide. DECC may consider other methods if it can be demonstrated that these methods yield the same information.
- 5. Endosulfan (CAS Registry Number 115-29-7) means the total of Endosulfan I (CAS Registry Number 959-98-8), Endosulfan II (CAS Registry Number 891-86-1) and Endosulfan sulfate (CAS Registry Number 1031-07-8).
- 6. The following moderately harmful pesticides (CAS Registry Number) are to be included in the total values specified:

Atrazine (1912-24-9), Azoxystrobin (131860-33-8), Bifenthrin (82657-04-3), Brodifacoum (56073-10-0), Carboxin (5234-68-4), Copper naphthenate (1338-02-9), Cyfluthrin (68359-37-5), Cyhalothrin (68085-85-8), Cypermethrin (52315-07-08), Deltamethrin (52918-63-5), Dichlofluanid (1085-98-9), Dichlorvos (62-73-7), Difenoconazole (119446-68-3), Dimethoate (60-51-5), Diguat dibromide (85-00-7), Emamectin benzoate (137515-75-4 & 155569-91-8), Ethion (563-12-2), Fenthion (55-38-9), Fenitrothion (122-14-5), Fipronil (120068-37-3), Fluazifop-P-butyl (79241-46-6), Fludioxonil (131341-86-1), Glyphosate (1071-83-6), Imidacloprid (138261-41-3), Indoxacarb (173584-44-6), Malathion (Maldison) (121-75-5), Metalaxyl (57837-19-1), Metalaxyl-M (70630-17-0), Methidathion (950-37-8), 3-Methyl-4-chlorophenol (59-50-7), Methyl chlorpyrifos (5598-13-0), N-Methyl pyrrolidone (872-50-4), 2-octylthiazol-3-one (26530-20-1), Oxyfluorfen (42874-03-3), Paraguat dichloride (1910-42-5), Parathion methyl (298-00-0), Permethrin (52645-53-1), Profenofos (41198-08-7), Prometryn (7287-19-6), Propargite (2312-35-8), Pentachloronitrobenzene (Quintozene) (82-68-8), Simazine (122-34-9), Thiabendazole (148-79-8), Thiamethoxam (153719-23-4), Thiodicarb (59669-26-0) and Thiram (137-26-8).

- 7. N/A means not applicable, because these contaminants are only assessed using SCC see Table 2 for SCC criteria.
- 8. Plasticiser compounds means the total of di-2-ethyl hexyl phthalate (CAS Registry Number 117-81-7) and di-2-ethyl hexyl adipate (CAS Registry Number 103-23-1) contained within a waste.
Table 2: Leachable concentration (TCLP) and specific contaminant concentration (SCC) values for classifying waste by chemical assessment

For disposal requirements for organic and inorganic chemical contaminants not listed below, contact DECC. Aluminium, barium, boron, chromium (0 and III oxidation states), cobalt, copper, iron, manganese, vanadium and zinc have not been listed with values in this table and need not be tested for.

		lues for <i>leachab</i> inant concentra			
	General se	olid waste ¹	Restricted	solid waste	
	Leachable concentration	Specific contaminant concentration	Leachable concentration	Specific contaminant concentration	CAS
Contaminant	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	Registry Number
Arsenic	5.0 ²	500	20	2000	
Benzene	0.5 ²	18	2	72	71-43-2
Benzo(a)pyrene ³	0.044	10	0.16	23	50-32-8
Beryllium	1.0 ⁵	100	4	400	
Cadmium	1.0 ²	100	4	400	
Carbon tetrachloride	0.5 ²	18	2	72	56-23-5
Chlorobenzene	100 ²	3600	400	14400	108-90-7
Chloroform	6 ²	216	24	864	67-66-3
Chlorpyrifos	0.2	7.5	0.8	30	2921-88- 2
Chromium (VI) ⁶	5 ²	1900	20	7600	
m-Cresol	200 ²	7200	800	28800	108-39-4
o-Cresol	200 ²	7200	800	28800	95-48-7
p-Cresol	200 ²	7200	800	28800	106-44-5
Cresol (total)	200 ²	7200	800	28800	1319-77- 3
Cyanide (amenable) ^{7, 8}	3.57	300	14	1200	
Cyanide (total) ⁷	16 ⁷	5900	64	23600	
2,4-D	10 ²	360	40	1440	94-75-7
1,2- Dichlorobenzene	4.3 ²	155	17.2	620	95-50-1
1,4- Dichlorobenzene	7.5 ²	270	30	1080	106-46-7
1,2- Dichloroethane	0.5 ²	18	2	72	107-06-2
1,1-Dichloro- ethylene	0.7 ²	25	2.8 100		75-35-4
Dichloromethane	8.6 ²	310	34.4	1240	75-09-2

			le concentration tion when used t		
	General so	olid waste ¹	Restricted	solid waste	
	Leachable concentration	Specific contaminant concentration	Leachable concentration	Specific contaminant concentration	CAS
Contaminant	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	Registry Number
2,4-Dinitrotoluene	0.13 ²	4.68	0.52	18.7	121-14-2
Endosulfan ⁹	3	108	12	432	See below ⁹
Ethylbenzene	30 ¹⁰	1080	120	4320	100-41-4
Fluoride	150 ¹⁰	10000	600	40000	
Fluroxypyr	2	75	8	300	69377- 81-7
Lead	5 ²	1500	20	6000	
Mercury	0.2 ²	50	0.8	200	
Methyl ethyl ketone	200 ²	7200	800	28800	78-93-3
Moderately harmful pesticides ¹¹ (total)	N/A ¹²	250	N/A ¹²	1000	See below ¹¹
Molybdenum	5 ¹⁰	1000	20	4000	
Nickel	2 ¹⁰	1050	8	4200	
Nitrobenzene	2 ²	72	8	288	98-95-3
C6-C9 petroleum hydrocarbons ¹³	N/A ¹²	650	N/A ¹²	2600	
C10-C36 petroleum hydrocarbons ¹³	N/A ¹²	10000	N/A ¹²	40000	
Phenol (non- halogenated)	14.4 ¹⁴	518	57.6	2073	108-95-2
Picloram	3	110	12	440	1918-02- 1
Plasticiser compounds ¹⁵	1	600	4	2400	See below ¹⁵
Polychlorinated biphenyls ¹²	N/A ¹²	< 50	N/A ¹²	< 50	1336-36- 3
Polycyclic aromatic hydrocarbons (total) ¹⁶	N/A ¹²	200	N/A ¹²	800	
Scheduled chemicals ¹⁷	N/A ¹²	< 50	N/A ¹²	< 50	See below ¹⁷
Selenium	1 ²	50	4	200	

			le concentration tion when used t		
	General so	olid waste ¹	Restricted	solid waste	
	Leachable concentration	Specific contaminant concentration	Leachable concentration	Specific contaminant concentration	CAS
Contaminant	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	Registry Number
Silver	5.0 ²	180	20	720	
Styrene (vinyl benzene)	3 ¹⁰	108	12	432	100-42-5
Tebuconazole	6.4	230	25.6	920	107534- 96-3
1,2,3,4- Tetrachloro- benzene	0.5	18	2	72	634-66-2
1,1,1,2- Tetrachloro- ethane	10 ²	360	40	1440	630-20-6
1,1,2,2- Tetrachloro- ethane	1.3 ²	46.8	l6.8 5.2 1		79-34-5
Tetrachloro- ethylene	0.7 ²	25.2	2.8	100.8	127-18-4
Toluene	14.4 ¹⁴	518	57.6	2073	108-88-3
1,1,1- Trichloroethane	30 ²	1080	120	4320	71-55-6
1,1,2- Trichloroethane	1.2 ²	43.2	4.8	172.8	79-00-5
Trichloroethylene	0.5 ²	18	2	72	79-01-6
2,4,5- Trichlorophenol	400 ²	14400	1600	57600	95-95-4
2,4,6- Trichlorophenol	2 ²	72 8		288	88-06-2
Triclopyr	2 75		8	300	55335- 06-3
Vinyl chloride	0.2 ²	7.2	0.8	28.8	75-01-4
Xylenes (total)	50 ¹⁸	1800	200	7200	1330-20- 7

Notes

- 1. Values are the same for general solid waste (putrescible) and general solid waste (nonputrescible).
- 2. See Hazardous Waste Management System: Identification and Listing of Hazardous Waste Toxicity Characteristics Revisions, Final Rule (USEPA 1990) for TCLP levels.
- 3. There may be a need for the laboratory to concentrate the sample to achieve the TCLP limit value for benzo(a)pyrene with confidence.

- 4. Calculated from *Hazardous Waste: Identification and Listing Proposed Rule* (USEPA 1995)
- 5. Calculated from 'Beryllium' in *The Health Risk Assessment and Management of Contaminated Sites* (DiMarco & Buckett 1996)
- 6. These limits apply to chromium in the +6 oxidation state only.
- 7. Taken from the Land Disposal Restrictions for Newly Identified and Listed Hazardous Wastes and Hazardous Soil: Proposed Rule (USEPA 1993)
- 8. Analysis for cyanide (amenable) is the established method used to assess the potentially leachable cyanide. DECC may consider other methods if it can be demonstrated that these methods yield the same information.
- 9. Endosulfan (CAS Registry Number 115-29-7) means the total of Endosulfan I (CAS Registry Number 959-98-8), Endosulfan II (CAS Registry Number 891-86-1) and Endosulfan sulfate (CAS Registry Number 1031-07-8).
- 10. Calculated from Australian Drinking Water Guidelines (NHMRC 1994)
- 11. The following moderately harmful pesticides (CAS Registry Number) are to be included in the total values specified:

Atrazine (1912-24-9), Azoxystrobin (131860-33-8), Bifenthrin (82657-04-3), Brodifacoum (56073-10-0), Carboxin (5234-68-4), Copper naphthenate (1338-02-9), Cyfluthrin (68359-37-5), Cyhalothrin (68085-85-8), Cypermethrin (52315-07-08), Deltamethrin (52918-63-5), Dichlofluanid (1085-98-9), Dichlorvos (62-73-7), Difenoconazole (119446-68-3). Dimethoate (60-51-5). Diguat dibromide (85-00-7). Emamectin benzoate (137515-75-4 & 155569-91-8), Ethion (563-12-2), Fenthion (55-38-9), Fenitrothion (122-14-5), Fipronil (120068-37-3), Fluazifop-P-butyl (79241-46-6), Fludioxonil (131341-86-1), Glyphosate (1071-83-6), Imidacloprid (138261-41-3), Indoxacarb (173584-44-6), Malathion (Maldison) (121-75-5), Metalaxyl (57837-19-1), Metalaxyl-M (70630-17-0), Methidathion (950-37-8), 3-Methyl-4-chlorophenol (59-50-7), Methyl chlorpyrifos (5598-13-0), N-Methyl pyrrolidone (872-50-4), 2-octylthiazol-3-one (26530-20-1), Oxyfluorfen (42874-03-3), Paraquat dichloride (1910-42-5), Parathion methyl (298-00-0), Permethrin (52645-53-1), Profenofos (41198-08-7), Prometryn (7287-19-6), Propargite (2312-35-8), Pentachloronitrobenzene (Quintozene) (82-68-8), Simazine (122-34-9), Thiabendazole (148-79-8), Thiamethoxam (153719-23-4), Thiodicarb (59669-26-0) and Thiram (137-26-8).

- 12. No TCLP analysis is required. Moderately harmful pesticides, petroleum hydrocarbons, polychlorinated biphenyls, polycyclic aromatic hydrocarbons and scheduled chemicals are assessed using SCC1 and SCC2.
- 13. Approximate range of petroleum hydrocarbon fractions: petrol C6-C9, kerosene C10-C18, diesel C12-C18, and lubricating oils above C18. Laboratory results are reported as four different fractions: C6-C9, C10-C14, C15-C28 and C29-C36. The results of total petroleum hydrocarbons (C10-C36) analyses are reported as a sum of the relevant three fractions. Please note that hydrocarbons are defined as molecules that only contain carbon and hydrogen atoms. Prior to TPH (C10-C36) analysis, cleanup may be necessary to remove non-petroleum hydrocarbon compounds. Where the presence of other materials that will interfere with the analysis may be present, such as oils and fats from food sources, you are advised to treat the extract that has been solvent exchanged to hexane with silica gel as described in USEPA Method 1664A (USEPA 1999).
- 14. Proposed level for phenol and toluene in Hazardous Waste Management System: Identification and Listing of Hazardous Waste – Toxicity Characteristics Revisions, Final Rule (USEPA 1990)
- 15. Plasticiser compounds means the total of di-2-ethyl hexyl phthalate (CAS Registry Number 117-81-7) and di-2-ethyl hexyl adipate (CAS Registry Number 103-23-1) contained within a waste.

16. The following polycyclic aromatic hydrocarbons (CAS number) are assessed as the total concentration of 16 USEPA Priority Pollutant PAHs, as follows:

Polycyclic aromatic hydrocarbons (total)									
PAH name	CAS Registry Number	PAH name	CAS Registry Number						
Acenaphthene	83-32-9	Chrysene	218-01-9						
Acenaphthylene	208-96-8	Dibenzo(a,h)anthracene	53-70-3						
Anthracene	120-12-7	Fluoranthene	206-44-0						
Benzo(a)anthracene	56-55-3	Fluorene	86-73-7						
Benzo(a)pyrene	50-32-8	Indeno(1,2,3-cd)pyrene	193-39-5						
Benzo(b)fluoranthene	205-99-2	Naphthalene	91-20-3						
Benzo(ghi)perylene	191-24-2	Phenanthrene	85-01-8						
Benzo(k)fluoranthene	207-08-9	Pyrene	129-00-0						

17. The following Scheduled Chemicals (CAS Registry Number) are to be included in the total values specified:

Aldrin (309-00-2), Alpha-BHC (319-84-6), Beta-BHC (319-85-7), Gamma-BHC (Lindane) (58-89-9), Delta-BHC (319-86-8), Chlordane (57-74-9), DDD (72-54-8), DDE (72-55-9), DDT (50-29-3), Dieldrin (60-57-1), Endrin (72-20-8), Endrin aldehyde (7421-93-4), Heptachlor (76-44-8), Heptachlor epoxide (1024-57-3), Hexachlorobenzene (118-74-1), Hexachlorophene (70-30-4), Isodrin (465-73-6), Pentachlorobenzene (608-93-5), Pentachloronitrobenzene (82-68-8), Pentachlorophenol (87-86-5), 1,2,4,5-Tetrachlorobenzene (95-94-3), 2,3,4,6 Tetrachlorophenol (58-90-2), 1,2,4-Trichlorobenzene (120-82-1), 2,4,5-Trichlorophenoxyacetic acid, salts and esters (93-76-5).

18. Calculated from *Guidelines for Drinking Water Quality* (WHO 1993)

Waste classification ¹	Criteria ² for classification by chemical assessment (any of the alternative options given)	Comments
General solid	1. SCC test values ≤ CT1	TCLP test not required
waste	2. TCLP test values ≤ TCLP1 and SCC test values ≤ SCC1	
	3. TCLP test values ≤ TCLP1 and SCC test values > SCC1 and DECC approves immobilisation ³	Without DECC approval of immobilisation, classify as restricted solid or hazardous (as applicable)
Restricted solid	1. SCC test values ≤ CT2	TCLP test not required
waste	2. TCLP1 < TCLP test values ≤ TCLP2 and SCC test values ≤ SCC2	
	3.TCLP test values ≤ TCLP2 and SCC1 < SCC test values ≤ SCC2	
	4. TCLP1 < TCLP test values ≤ TCLP2 and SCC test values > SCC2 and DECC approves immobilisation ³	Without DECC approval of immobilisation, classify as hazardous
Hazardous	1. TCLP test values > TCLP 2	
waste	2. TCLP test values ≤ TCLP2 and SCC test values > SCC2 and no DECC approval for immobilisation	

Table 3: Summary of criteria for chemical assessment to determine waste classification

Notes:

1. See also the general waste classification principles on page 2 for other criteria that must be satisfied before the waste can be classified.

2. These criteria apply to each toxic and ecotoxic contaminant present in the waste (see Tables 1 and 2).

3. In certain cases DECC will consider specific conditions, such as segregation of the waste from all other types of waste in a monofill or monocell in order to achieve a greater margin of safety against a possible failure of the immobilisation in the future. Information about the construction and operation of a monofill/monocell is available in the *Draft Environmental Guidelines for Industrial Waste Landfilling* (EPA 1998).

APPENDIX K

BOREHOLE & GROUNDWATER LOGS

	Aargu	us	Aarg	jus					BORE	HC	DLE	PAGE 1 OF 1
						-2						Streets, Marrickville NSW
												UM
DF	RILLI	NG C	ONTR	асто	R Aa	argus		SLOPE _90°			BEA	RING
			Drill 100m	Rig /	Concr	ete Corer					CHE	CKED BY _MK
			10011								CHE	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Descripti	on	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
BOREHOLE / TEST PIT GINT.GPJ GINT STD AUSTRALIA.GDT 4/16/14 AST			0.5		CI-CH	Fill: Silty Clay, low plasticity, t concrete & sandstone	alasticity, yellow, brown	races of angular gravel, glass,		M-W	Fb /	No hydrocarbon odour, no hydrocarbon staining, no fibro-cement material observed

1.25	Aargu		Aarg								PAGE 1 OF 1
						-2	PROJECT NAME _ Detailed Site Investigation PROJECT LOCATION _ Victoria & Faversham Streets, Marrickville NSW				
						COMPLETED10/16/13					
						argus					
EQ	UIPI	MENT	Han								
			50mr	n			LOGGED BY MS			CHE	CKED BY MK
NO	TES	;									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip Fill: Silty Sandy Clay, low plasticity, light brown to		Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
				Graphic I		ash, chárcoal, bitumen & concrete gravels		D4			No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
			0.5		СІ-СН	Silty CLAY, medium to high plasticity, yellow, brow	/n & grey		M-W	S	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
			1.0								

	Aargu	us	Aarg	us			BORE	HC	OLE	PAGE 1 OF 1
						2				
						-2 COMPLETED 10/16/13				Streets, Marrickville NSW
						argus				
									CHE	CKED BY MK
NC	DTES	;								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
BOREHOLE / TEST PIT GINT.GPJ GINT SID AUSTIKALIA.GDT 4/16/14					F	Fill: Silty Sandy Clay, low plasticity, light brown to br ash, charcoal, bitumen & concrete gravels Silty CLAY, medium to high plasticity, yellow, brown Borehole BH12 terminated at 0.9m		M-W	Fb	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
BOREHULE / IL			1.0							

						2					
						COMPLETED 10/16/13					
						argus					
						ete Corer					
	TES							1			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
ה					С	Concrete					
			_	A A A A A A A A A A A A A A A A A A A							
5			_		F	Fill: Silty Clay, low plasticity, brown to dark brown concrete & sandstone	traces of angular gravel, glass,		D	F	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
			_								
			0 <u>.5</u>								
			_								
					CI	Silty CLAY, medium plasticity, red, brown & grey,	traces of siltstone & shale mottling		м	F	
			_								No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
			_								
			1.0			Parabala DL12 torreitation of 4					
						Borehole BH13 terminated at 1m					

	argu	45	Aarę	gus				BORE	HC	DLE	E NUMBER BH15 PAGE 1 OF
						2					Streets, Marrickville NSW
						COMPLETED 10/16/13					
						irgus					
						ete Corer					
		SIZE .					LOGGED BYMS			CHE	
		/									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	ption	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
Ы					С	Concrete					
				0 9 9 0							
AST			-		F	Fill: Silty Sandy Clay, low plasticity, light brown to ash, charcoal, bitumen & concrete gravels	brown/ red, with angular gravels,		М	S	
						,					
			-								
			-						1		No hydrocarbon odour, no hyrdrocarbon staining, no
											fibro-cement material observed
				\bigotimes							
			-					D3 & SS3			
			0.5								
								.	1		
			-								
			-	Ń	CI-CH	Silty CLAY, medium to high plasticity, yellow, bro	wn & grey		W	S	1
			-								
			-					T .			No hydrocarbon odour, no hyrdrocarbon staining, no
								I.			fibro-cement material observed
								1			
			1.0			Borehole BH15 terminated at 1m					

Aargus Aargus CLIENT <u>E & D Danias Pty Ltd</u> PROJECT NAME <u>Detailed Site Invest</u>											E NUMBER BH16 PAGE 1 OF 1
						2					
							R.L. SURFACE DATUM				
						irgus					
				-		ete Corer					
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
DT				A P P P P P P P P P P P P P P P P P P P	С	Concrete					
AST			- - 0 <u>.5</u>		F	Fill: Silty Clay, low plasticity, brown to dark brown, tra concrete & sandstone	aces of angular gravel, glass,		M	F	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
					CI	Silty CLAY, medium plasticity, red, brown & grey, tra	ces of siltstone & shale mottling		M-W	S	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed

	argu	IS	Aargus					_	_		E NUMBER BH17 PAGE 1 OF 1	
				as Pty Ltd ES5611-2							Streets, Marrickville NSW	
						COMPLETED _10/17/13						
						۱ ۲						
Method	Water	Well Details	RL (m)	(m) Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations	
AST		X X		-	F	Fill: Silty Clay, low plasticity, red & brown, metal	traces of angular gravels & blue		D	F		
				0.5 	CL	Silty CLAY, low plasticity, red, brown & gre	sy		D	F	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed	
	_			- - 1. <u>5</u> - 2.0 - - - - - - - - - - - - - - - - - - -	CL	Silty CLAY, low plasticity, red, brown & gre	ey, traces of shale mottling		D-M	Fb-F	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed	
					Shale	Weathered Shale, grey, traces of clay Borehole BH17 terminated at 4.5m			M	Fb		

Aar	gus		Aarg	gus				BORE	HC	DLE	PAGE 1 OF 1
						-2					
DATE DRILL EQUIF	E ST LING PMI	TAR G C ENT	Dril	10/16 ACTO I Rig /	6/13 R _ Aa Concre	argus COMPLETED10/16/13	R.L. SURFACE SLOPE _90° HOLE LOCATION			DAT BEA	'UM RING
Method Water			Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
т DT			_	X + + + + + + + + + + + + + + + + + + +	F	Concrete Fill: Silty Sandy Clay, low plasticity, light brown to	brown/red with angular gravels				-
AST			- 0.5 - 1.0 - - - - - - - -		F	Due to refusal on fill / concrete Borehole BH18 terminated at 0.8m	biowitr rea, with angular gravels,		M	S	No hydrocarbon odour, hyrdrocarbon staining, no fibro-cement material observed No hydrocarbon odour, hyrdrocarbon staining, no fibro-cement material observed

	Aargu		Aar	-							E NUMBER BH19 PAGE 1 OF 1
						-2					
						COMPLETED _10/16/13					
						ete Corer					
	DLE S		100r	nm			LOGGED BY MS			CHE	CKED BYK
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
AST DT	-		0.5		F	Fill: Silty Sandy Clay, low plasticity, light brown to t bricks, ash, charcoal, bitumen & concrete gravels	prown/ red, with angular gravels,		M	Fb	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
BOKEHOLE / IESI PIT GINI.GPJ GINI SID AUSIKALIA.GDI 4/16/14						Due to refusal on fill Borehole BH19 terminated at 0.5m					

	argu		Aarç	-							E NUMBER BH2 PAGE 1 OF 1
						2					Streets, Marrickville NSW
						argus					
						ete Corer					
			100m								
NO	TES										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptic	n	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
AST DT AST			(m) 		F	Concrete Fill: Silty Gravelly Sand, coarse grained, grey Fill: Silty Clay, medium plasticity, dark grey Silty CLAY, medium to high plasticity, grey with red r	nottling, traces of silstone & gravel		M	Fb	No hydrocarbon odour, no fibro-cement material observed No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
				Ň							
						Borehole BH2 terminated at 1.6m					

	Aargu		Aar	gus				BORE	HC	DLE	PAGE 1 OF 1
CL	IENT	Г <u>Е</u> а									
						2					Streets, Marrickville NSW
						argus					
						ete Corer					
но		SIZE									
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Descripti	n	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
AST DT	-		_	× + + + + + + + + + + + + + + + + + + +	F	Concrete Fill: Silty Sandy Clay, low plasticity, light brown to b bricks, ash, charcoal, bitumen & concrete gravels	rown/ red, with angular gravels,		M	S	-
			 - 0. <u>5</u>								No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
						Due to refusal on fill Borehole BH21 terminated at 0.6m					

CL PR DA DF	ROJE ATE (RILLI	T <u>E</u> CT N STAR NG C	umbe Ted Ontr	anias I RE 10/16 ACTO	<u>S5611-</u> 5/13 1 R _ Aa	-2 COMPLETED _10/16/13 argus	PROJECT LOCATION R.L. SURFACE SLOPE 90°	ailed Site Inv Victoria & F	estig	ation sham DAT BEA	Streets, Marrickville NSW
нс	DLE \$		50m	n			LOGGED BY MS				
Method	Water		Depth (m)	hic Log	Classification Symbol	Material Descript	on	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
AST					F	Fill: Silty Sandy Clay, low plasticity, light brown to b ash, charcoal, bitumen & concrete gravels	rown/ red, with angular gravels,		D	F	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
						Due to refusal on fill Borehole BH22 terminated at 0.5m					

			Aarg	jus				BOR	EH	IOL	PAGE 1 OF 1
1.12	iargu IENT		& D Da	anias F	Pty Ltd		PROJECT NAME _ Deta	iled Site Inv	estig	ation	
PR	OJE		UMBE	R _ES	65611-	2	PROJECT LOCATION	Victoria & F	avers	sham	Streets, Marrickville NSW
DA	TES	STAR	TED	10/15	/13	COMPLETED 10/15/13	R.L. SURFACE			DAT	UM
						argus					
						ete Corer					
										CHE	CKED BY MK
	TES	·									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	n	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
AST						Fill: Silty Gravel, medium, grey			D	Fb	hyrdrocarbon staining, no
			0.5		F	Fill: Silty Clay, medium plasticity, green & grey with gravels	-	_	M	F	fibro-cement material observed No hydrocarbon odour, no hyrdrocarbon staining, no
											fibro-cement material observed
			1 <u>.0</u> 								No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
\vdash			-			Borehole BH3 terminated at 1.6m				-	

						2	PROJECT NAME				
						COMPLETED _10/16/13					
						argus					
Q	UIPN	/IENT	Dril	l Rig /	Concre	ete Corer	HOLE LOCATION				
0	LES	SIZE	100n	nm			LOGGED BY MS			CHE	CKED BY MK
10	TES		1						1		1
INIGILIOU	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	ion	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
ē			_	8 2 8 2 8 2 8 2 8 2 8 2 2 2 2 2 2 2 2 2	С	Concrete					
			_		F	Fill: Silty Sandy Clay, low plasticity, light brown to ash, charcoal, bitumen & concrete gravels	prown/ red, with angular gravels,	-	M	S	No budrooorboo odour, po
			0 <u>.5</u>					D2 & SS2			No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
			_								
			- 1.0		CŀCH	Silty CLAY, medium to high plasticity, yellow, brow	n & grey		M-W	VS	No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed
- 1				· · · · · ·		Borehole BH4 terminated at 1m		1.			

1.1.2	Aargu		Aaro	-						E NUMBER BH5 PAGE 1 OF 1
						-2				Streets, Marrickville NSW
						COMPLETED _10/16/13				
EC	QUIPN	MENT	Har	nd Aug	er					
		s								
Method	Water	RL (m)	Depth (m)		Classification Symbol	Material Descripti	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
HA			 0. <u>5</u> 		F	Fill: Silty Clay, low plasticity, brown to dark brown, t concrete & sandstone		M	Fb	No hydrocarbon odour, hyrdrocarbon staining, no fibro-cement material observed

	argu		Aarg									E NUMBER BH6 PAGE 1 OF 1
						2						
						COMPLETED10/16/1						
						irgus						
EQ	UIPN	IENT	Han	d Aug	er			HOLE LOCATION				
											CHE	CKED BY
NO	TES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol		ial Description		Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
HA			((III) (IIII) (III) (III) (III) (III) (III) (III) (III) (III) (III) (III) (III		F	Fill: Silty Clay, low plasticity, brown to d concrete & sandstone				M	Fb	No hydrocarbon odour, hyrdrocarbon staining, no fibro-cement material observed

	argu	Aarg	-							PAGE 1 OF 1
					2					
					COMPLETED <u>10/16/13</u>					
					irgus					
		50mr				LOGGED BY MS			CHE	
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio	1	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
HA		(m) - - - - - - - - - - - - - - - - - - -		F	Fill: Silty Sandy Clay, low plasticity, light brown to broash, charcoal, bitumen & concrete gravels			M-W	Fb VS	No hydrocarbon odour, hyrdrocarbon staining, no fibro-cement material observed
					Borehole BH7 terminated at 1.3m					

Aargus PROJECT NAME Detailed Site Inverter Project Site Site Site Site Site Site Site Sit	avershan DA [*] BEA	M Streets, Marrickville NSW
PROJECT NUMBER _ ES5611-2 PROJECT LOCATION _ Victoria & Fai DATE STARTED _ 10/16/13 COMPLETED _ 10/16/13 R.L. SURFACE	Moisture Moisture Cons./Dens.	ATUM
DRILLING CONTRACTOR Aargus SLOPE 90° EQUIPMENT Hand Auger HOLE LOCATION HOLE SIZE 50mm LOGGED BY MS NOTES Samples Tests Remarks RL (m) Depth (m) RL (m) Depth (m) Solution Samples Tests Remarks	Moisture Cons./Dens.	ARING HECKED BY _MK
EQUIPMENT Hand Auger HOLE LOCATION HOLE SIZE 50mm LOGGED BY MS NOTES Samples Samples RL Depth US Samples Notes Samples Tests Remarks Samples Samples	Moisture Cons./Dens.	Additional Observations
HOLE SIZE 50mm LOGGED BY MS NOTES	Moisture Cons./Dens.	Additional Observations
NOTES verture verture verture RL (m) verture RL (m) verture Verture Ve	Moisture Cons./Dens.	Additional Observations
Method RL Depth G U N A A strate Samples Tests Remarks Samples Tests Samples		
F Fill: Silt, light brown, traces of angular gravels, concrete, river pebbles & organic matter	D Fb	b
		No hydrocarbon odour, no hyrdrocarbon staining, no fibro-cement material observed

	Aargu	us	Aargu	JS					BOR	EH	IOL	E NUMBER BH9 PAGE 1 OF 1
						-						
												Streets, Marrickville NSW
												'UM RING
												Ring
нс	DLE S	SIZE	100mr	m				LOGGED BY MS			CHE	CKED BY MK
NC	TES	s				1						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Description	n	Samples Tests Remarks	Moisture	Cons./Dens.	Additional Observations
BOREHOLE / TEST PIT GINT.GPJ GINT STD AUSTRALIA.GDT 4/16/14 AST 1 AUSTRALIA.GDT 4/16/14					CI-CH	concrete & sandstone	plasticity, yellow, brown	races of angular gravel, glass,	D1 & SS1	M-W	Fb S	No hydrocarbon odour, no hydrocarbon staining, no fibro-cement material observed

APPENDIX L

FIELD RECORD FORMS

Aargus Pty Ltd

Sampling & Monitoring Details for Individual Determinants Location/Address: Name of Officer Responsible: Title of Officer Responsible: Phone: Fax: Mobile: 0425 38 390 Other: Other persons involved in inspection & monitoring (including laboratories, information, electronic readings, etc) Inlin hle Date of Inspections 19 Time of Start: 7.30 Finish: Description of Weather: Wind Direction Wind Speed: Rainfall(mm): Humidity: Odours present Y/ Location: Odours spraying YAN Time: Location: Environmental &/or other accidents/concerns:(details) Time: Inc Actions:

Stormwater controls Y/I	V Location(s):	Time:
Dust suppression Y/N_	Location(s):	Time:
Traffic control Y/N	Location(s):	Time:
Equipment on site:		
- Hand Auge		
- Concrete (or	-e/	
- Estico		
-Jars		
-		
	10	
Truck movement tally:_	NA	

Field Measurements

Torretor	PID level	Location	PID level	Location	PID level	Location	PID level
Location	PID level	Location	TILL ISI'SI		1		
Location	PID level	Location	PID level	Location	PID level	Location	PID level
Location	PID level	Location	PID level	Location	PID level	Location	PID level
Location	PID level	Location	PID level	Location	PID level	Location	PID level
Location	PID level	Location	PID level	Location	PID level	Location	PID level
Location	Other	Location	Other	Location	Other	Location	Other
Location	Other	Location	Other	Location	Other	Location	Other
Location	Other	Location	·Other	Location	Other	Location	Other
Location	Other	Location	Other	Location	Other	Location	Other

Aargus Pty Ltd

Sampling & Monitoring Details for Individual Determinants Location/Address: Wides Park Mandantle Name of Officer Responsible: Michael Sile Title of Officer Responsible: Enno. G. Phone: Fax: Mobile: 0425 44 390 Other: Other persons involved in inspection & monitoring (including laboratories, information, electronic readings, etc) int Dalles Date of Inspection? 10/3Time of Start: 7.30 Finish: Description of Weather: File Wind Direction: Wind Speed: _-Rainfall(mm):-Humidity: Odours present Y/N Location: Time: Odours spraying YND Location: Time: Environmental &/or other accidents/concerns:(details) wells JD/ Actions:

Stormwater controls Y D Location(s):	Time:
Dust suppression Y/Y Location(s):	Time:
Traffic control Y/CPLocation(s):	Time:
Equipment on site: Concrete Corer	
- Inthe Gig	
- Hand Auger	
Je	
Truck movement tally: NA	

Field Measurements

	DID level	Location	PID level	Location	PID level	Location	PID level
Location	PID level	Location	TID IGVOI		10	1	1.000
Location	PID level	Location	PID level	Location	PID level	Location	PID level
Location	PID level	Location	PID level	Location	PID level	Location	PID level
Location	PID level	Location	PID level	Location	PID level	Location	PID level
Location	PID level	Location	PID level	Location	PID level	Location	PID level
Location	Other	Location	Other	Location	Other	Location	Other
Location	Other	Location	Other	Location	Other	Location	Other
Location	Other	Location	Other	Location	Other	Location	Other
Location	Other	Location	Other	Location	Other	Location	Other

÷

Aargus Pty Ltd

Sampling & Monitoring Details for Individual Determinants Location/Address: Wicks fate, Mainder the New Name of Officer Responsible: Michael Title of Officer Responsible:_ Enviro Phone: Fax: Mobile: 0425 344 390 Other: Other persons involved in inspection & monitoring (including laboratories, on information, electronic readings, Groundsmell fabr Mai Laborack etc) Date of Inspection 29 10/3 Time of Start: 9.45am Finish: 1pm Description of Weather: Fine Wind Speed: ______Rainfall(mm):___ Wind Direction: Humidity: Odours present Y/D_Location: Odours spraying Y/1 Location: Time: Environmental &/or other accidents/concerns:(details) Time: Water ass Actions:

Equipment Hand Bail + Low flow attachment YSI noter OA/AC Dip Meter OA/AC N/C

	1/2			A COLUMN DESCRIPTION OF	1 721.11	
<u></u>	Losanor	1200 12-3		1212 1213		
Levense 1 Pro level	1 14 19 9 8 19 7 20			1	1.228/127	「別日はは
		1 EtO leval	(Ladellon)	1 910 (5) =		
1 1 2121 allda	1 1.0000000	1242019191			1	PLD leve
12222.20 123-032			T	1 120 131 2	1.1.4:21(1)*	1.100.00
	(Lata)27	1 PID level	[Location			
Lotation (EDD and	1			I	1 2.1 23	21 18 18 18 18 18 18 18 18 18 18 18 18 18
	1	P.D. 3-3-	1 1.5231/25	1 PLD lever	1	
Constitution of the data.	Titeratur"	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1		1	1 7127 13 (4
1.202107 0 Feet 1994	1		1 and the set	TEL and	1 1	1.2.2.2.42
	11.1114	210 Landa	1.0020.07			
Long L. Af			1		Licalian	1 20257
	1	Dinat	11.11212127	1 00251	1	
	1.1.1421-2		1		Same -	- Çal
			11,1145,45	1024	1	
and the second s	1	1	- Caracteria			
states - Hall			and the second s	The .	N. Astron	1.44
		5	1.41.839-3	-		
				1.33	103474	
			127			

Aargus

GROUNDWATER MONITORING RECORD FORM

PROJECT INFO	ORMATION		
Client:	E& D Danias PIL	Monitoring Well ID:	bull C 1
Site Address:	Wicks Park, Marrickville	Logged By:	BHIY/Gwl
Project:	OST	Date:	29.10.13
			29.10-13

MONITORING WELL DETAI	LS		
Depth (m) as constructed:	5.Jm	Depth (m) as measured:	CILL
Finish:	Gatic	Co-ordinates:	5-46m
Condition:	OK	Surveyed Levels:	

Water Measurement Device:	Die Meter	Reference Point:	Tea & Cato
Water Quality Meter:	VSI	Reference Point to Ground Surface (mm):	11 4010
GW Extraction Method:	Hand Bail + la	Surface (mini).	

GROUNDWATER GAUGIN	G (PRE-PURGE)	GROUNDWATER GAUGING	POST PUPCE
SWL (m bgl):	123 RGL	SWL (m bgl):	Libro Plil
Depth to Product (m bgl):	NII visable	Depth to Product (m bgl):	TOM DYL
Product Thickness (mm):	Nil visible	Product Thickness (mm):	Not
Time:	11-49am	Time:	Nil
			1006 pm

Time	Volume Purged	Pump Rate (mL/min)	Temperature (°C)	DO (mg/L)	pH (pH units)	EC (µS/cm)	Redox
11.59	26		23.4	1-80	6.72	1256	Potential (mV 80-4
11.58	24		22.6	1.83	6-12	1213	78-8
12:03	20		22-7	1.80	601	1217	77.1
12-65	12		22.1	1.74	5.95	1197	73.2
							C
	Stal	oilisation Criteria	±0.2 °C	± 0.2 mg/L	± 0.1 pH units	± 5%	

Odour:	No	Sheen:	1 1 10
Colour / Turbidity:	1111 d		100
colour / furbialty:	VIGht bonn &	Recent Rain (Days):	No

Samples Taken:	Primary	Blind	C - 10		
Containers:	1/	Billia	Split	Rinsate	TS/TB
containers:	4				
Field Filtered:	No				
Preservation:	Ve	. (

Document Versiont
Date: Document Version: 0

GROUNDWATER MONITORING RECORD FORM

Aargus

PROJECT INFO	DRMATION		
Client:	E & D. Danias PUL	Monitoring Well ID:	BIN/GWZ
Site Address:	Wicks Pack Marrickalle	Logged By:	MS
Project:	DST	Date:	29.10.13

MONITORING WELL DETAIL	S		
Depth (m) as constructed:	4-5	Depth (m) as measured:	427m B4L
Finish:	latic	Co-ordinates:	
Condition:	OK	Surveyed Levels:	-

Water Measurement Device:	Dip Mater	Reference Point:	Top of links
Water Quality Meter:	YST	Reference Point to Ground Surface (mm):	Top of Gabic
GW Extraction Method:	Hand Bail & low to	her	1 1

GROUNDWATER GAUGING	G (PRE-PURGE)	GROUNDWATER GAUGIN	G (POST-PURGE)
SWL (m bgl):	1.2m 841	SWL (m bgl):	1.53
Depth to Product (m bgl):	Nil	Depth to Product (m bgl):	Nil
Product Thickness (mm):	n_{i}	Product Thickness (mm):	11
Time:	11.07.am	Time:	11-18 am

Time	Volume Purged	EMICAL PARAN Pump Rate (mL/min)	Temperature (°C)	DO (mg/L)	pH (pH units)	EC (µS/cm)	Redox Potential (mV)
11.05	24	(22.1	1.58	6.68	2320	23.7
11.09	IL		21.5	1.22	6-18	2324	58.2
11.01	12		213	1.44	6.25	2334	44.4
11.16	IL		20.8	1.58	6.10	202273	57.8
	Sta	bilisation Criteria	± 0.2 °C	± 0.2 mg/L	± 0.1 pH units	± 5%	± 10 mV

OBSERVATIONS			
Odour:	Nil	Sheen:	No
Colour / Turbidity:	Light Brown last	Recent Rain (Days):	No

SAMPLING					
Samples Taken:	Primary 1	Blind	Split	Rinsate	TS/TB
Containers:	4				
Field Filtered:	No				
Preservation:	Yor				

Record Checked by:	29.10.13 101	Document Version:	0	
Date:	NV)	Updated:	7/2/13	

GROUNDWATER MONITORING RECORD FORM

Client:	FEDD' DI	Teene	/
	EED Danias P/L	Monitoring Well ID:	RHOD CLIP
Site Address:	Wicks Parke, Marrichulle	Logged By:	Direct Gross
Project:	AST	Date:	119-5

MONITORING WELL DETA	ILS		
Depth (m) as constructed:	5-5m	Depth (m) as measured:	KI MA 100
Finish:	Galic	Co-ordinates:	4 4 Day SJon
Condition:	OK	Surveyed Levels:	~

Water Measurement Device:	Dip Meter	Reference Point:	To. PTI
Water Quality Meter:	YSI	Reference Point to Ground Surface (mm):	T P C L.
GW Extraction Method:	Hard Bail + low	Surace (mm):	Top of hatic

GROUNDWATER GAUGIN	G (PRE-PURGE)	GROUNDWATER GAUGING	(POST DUDOS)
SWL (m bgl):	1-15m	SWL (m bgl):	
Depth to Product (m bgl):	Nil	Depth to Product (m bgl):	1.79m
Product Thickness (mm):	11	Product Thickness (mm):	Nil
Time:	10.05am	Time:	NI
	10000		10.23 am

Time	Volume Purgect	Pump Rate (mL/min)	Temperature (°C)	DO (mg/L)	pH (pH units)	EC (µS/cm)	Redox
10.13	21		23.0	1-58	6.94	2640	Potential (mV /22-3
10.15	32		21.5	1.82	6.85	52-7	109.8
10.16	21		21.0	1251-7	6.85	4446	
10.17	12		210	1.74	6.85	5134	56
	Stab	ilisation Criteria	10.2%	1.0.2			
		instance of contenta	± 0.2 °C	± 0.2 mg/L	± 0.1 pH units	± 5%	± 10 mV

OBSERVATIONS			
Odour:	Nil	Sheen:	
Colour / Turbidity:	Clarge All	1110	No
States and Capratication	(lear / Noty	farbid Recent Rain (Days):	nl

SAMPLING						
Samples Taken:	Primary	Blind	1	Split	Rinsate	
Containers:	4	11	,	LI) Isinsate	TS/TB
Field Filtered:	No	N	0	No		
Preservation:	YOS	Yes	>	Yo:		

Record Checked by:	M.S	1	Document Version:	
Date:	20	1. 1.		0
Date.	24/	10 113	Updated:	7/2/13

WELL CONSTRUCTION AND DEVELOPMENT RECORD FORM

Client:	E & J larias	Monitoring Well ID:	manuta
ite Address:	Wills Park Manckville		BAIY/GWI
Project:	DST	Date:	11-5

Total Bore Depth (m):			
	5-5	Screening Zone (m bgl):	
Borehole Diameter:	- 100	Finish:	2-5-5-5-
Standpipe Diameter:	100mm	1000400	Galia
standpipe Diameter:	SOMB	Coordinates:	Jase

METHODOLOGY AND EQUI Water Measurement Device:			
	Dig Meter	Reference Point:	The for
Groundwater Extraction Method:	Hand Bail	Reference Point to Ground Surface (mm);	10p of Latte

GROUNDWATER GAUGING	a (FRE-DEVELOPIMENT)	GROUNDWATER GAUGING	POST-DEVELOP
	1-500	SWL (m bgl):	(OST-DEVELOPMENT)
Depth to Product (m bgl):	Nil	Depth to Product (m bgl):	2-3m
Product Thickness (mm):		Product Thickness (mm):	Nil
fime:	9.50 am	Time:	1,
		Total GW Volume Extracted (L):	10.05am

OBSERVATIONS (PRE-DEVELOPMENT	OBSERVATIO	ONS (POST-DEVELOPMENT)
Vo	Odour:	(OST DEVELOPMENT)
Sheen:	Cheve	11
Colour:	Sheen:	
Drown	Colour:	
Turbidity:	Turbidity:	11
Other: (FS	rutolatty:	61
7. T 1911	Other:	

Record Checked by:		
Date:	Document Version:	10
	Updated:	10/1/13
		+ 0/ +/ 1.3

WELL CONSTRUCTION AND DEVELOPMENT RECORD FORM

Client:	EFD Panias	Monitoring Well ID:	puetra
Site Address:	Wich lack Mancharthe	Logged By:	BHIT/ Gar2
Project:	OST	Date:	MES

WELL CONSTRUCTION D	ETAILS		
Total Bore Depth (m):	4.5	Screening Zone (m bgl):	
Borehole Diameter:	loomm	Finish:	1-5-4-5
Standpipe Diameter:	Samm	Coordinates:	liatic

METHODOLOGY AND EQU	JIPMENT		
Water Measurement Device:	Dip Meter	Reference Point:	
Groundwater Extraction Method:	YSI	Reference Point to Ground	Top of Gartic
		Surface (mm):	Toportoris

SWL (m bgl):	NG (PRE-DEVELOPMENT)	GROUNDWATER GAUGING	POST DEVELOP
	1.45m	SWL (m bgl):	
Depth to Product (m bgl):	Nil	Depth to Product (m bgl):	2-49m
Product Thickness (mm):	Nil		Nil
Time:	1011	Product Thickness (mm):	NIC
	10-15-	Tíme:	
		Total GW Volume Extracted (L):	10-30gm
		rotal div volume Extracted (L):	121

Odour:	ONS (PRE-DEVELOPMENT)	OBSERVAT	TIONS (POST-DEVELOPMENT)
	NO	Odour:	
Sheen:	Nil	Sheen:	Nil
Colour:	Brown / white spec's	Colour:	wil
Turbidity:	No	Turbidity:	Brown / white Spee's
Other:		rurbiuity.	No
DEVE D.B. PORT		Other:	

Record Checked by:		
Date:	Document Varsion:	
Con a design	Updated: 10/1/12	F.

WELL CONSTRUCTION AND DEVELOPMENT RECORD FORM

Aargus

Client:	TRACI	the second se	
Cheffin	E & D Danias	Monitoring Well ID:	BAZO/GW3
Project:	Wicks Park Mandarthe	Logged By:	1
	DIE	Date:	M.s
	DJI	Date:	12/10/13

ETAILS		
5.Jm	Screening Zone (m bgl):	2-5-5-5
100upm	Finish:	Galic
50mm	Coordinates:	Gaute
	5.5m 100mm	S.S.m Screening Zone (m bgl): 100umm Finish:

METHODOLOGY AND EQU	IPMENT		
Water Measurement Device:	Dig Meter	Reference Point:	To 8 (1)
Groundwater Extraction Method:	& Had Bail	Reference Point to Ground	Top of Contre
memour	r requiperi	Surface (mm):	LI

GROUNDWATER GAUGIN	G (PRE-DEVELOPMENT)	GROUNDWATER GAUGING (POST-DEVELOPMENT)		
SWL (m bgl):	4.33	SWL (m bgl):	S-PI	
Depth to Product (m bgl):	Nil	Depth to Product (m bgl):		
Product Thickness (mm):	((Product Thickness (mm):	Nil	
Time:	12.45pm	Time:	1000	
	1	Total GW Volume Extracted (L):	1.00pm	

	NS (PRE-DEVELOPMENT)	OBSERVATIO	NS (POST-DEVELOPMENT)
Odour:	Nil	Odour:	Nil
Sheen:	N.I	Sheen:	
Colour:	Brown	Colour:	NIL
Turbidity:	No	Turbidity:	Brown
Other:		Other:	No

Record Checked by:		
nesura chestea by:	Document Version:	0
Date:		Q
6.5.5.5	Updated:	10/1/13

Sample ID	Depth Range (m bgl)	PID Reading (ppm)s	Stratum
BH1	0-0.5	0.2	F
BH1	0.5-1.0	0.2	F
BH1	1-1.5	0.1	Ν
BH2	0-0.5	0.3	F
BH2	0.5-1.0	0.0	F
BH2	1-1.5	0,0	Ν
BH3	0-0.5	0.1	F
BH3	0.5-1.0	0.0	F
BH3	1-1.5	0.0	Ν
BH4	0.3-0.5	0.3	F
BH4	0.9-1.0	0.2	Ν
BH5	0.2-0.4	0.3	F
BH5	0.8-1.0	0.3	Ν
BH6	0.2-0.4	0.5	F
BH6	0.9-1.0	0.4	Ν
BH7	0.4-0.6	0.1	F
BH7	1.1-1.3	0.0	Ν
BH8	0.1-0.3	0.5	F
BH9	0.4-0.6	0.3	F
BH9	0.8-1.0	0.3	Ν
BH10	0.4-0.5	0.2	F
BH10	0.8-1.0	0.2	Ν
BH11	0.2-0.4	0.7	F
BH11	0.7-0.9	0.6	Ν
BH12	0.3-0.5	0.5	F
BH12	0.7-0.9	0.4	Ν
BH13	0.2-0.4	0.0	F
BH13	0.8-1.0	0.0	Ν
BH14	0.2-0.3	0.4	F
BH14	0.6-0.8	0.3	Ν
BH15	0.3-0.5	0.0	F
BH15	0.9-1.0	0.0	Ν
BH16	0.3-0.5	0.0	F
BH16	0.8-1.0	0.0	Ν
BH17	0.3-0.5	0.0	F
BH17	0.7-0.8	0.0	Ν
BH18	0.4-0.5	0.0	F
BH18	0.7-0.8	0.1	Ν
BH19	0.2-0.4	0.1	F
BH20	0.2-0.4	0.2	F
BH20	1.0-1.1	0.3	F
BH20	2.4-2.5	0.5	Ν
BH21	0.3-0.5	0.7	F
BH22	0.2-0.3	0.5	F

APPENDIX M

CALIBRATION CERTIFICATES

Instrument Serial No.

PhoCheck Tiger T-105429

15/10/2013

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comments	3
Battery	Charge Condition	1				
	Fuses	1				
	Capacity	1				
and the second second	Recharge OK?	1				
Switch/keypad	Operation	1				
Display	Intensity	1				
	Operation (segments)	1				
Grill Filter	Condition	1				
	Seal	1				
Pump	Operation	1				
	Filter	1				
	Flow	1				
	Valves, Diaphragm	1				
РСВ	Condition	1	-			
Connectors	Condition	1				
Sensor	PID	1	10.6 ev			
Alarms	Beeper	1	Low	High	TWA	STEL
	Settings	1	50ppm	100ppm		
Software	Version	1				
Data logger	Operation	1	1 E. Jr			
Download	Operation	1				
Other tests:	Flowrate					

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
PID Lamp		100ppm Isobutylene	NIST	SY21	100.4ppm
Calibrated by:	huy	And	Joanna Wo	ng	
Calibration date:	/ /	15/10/2013			
Next calibration	due:	14/11/2013			

APPENDIX N

LABORATORY TECHNICAL INFORMATION

TECHNICAL HOLDING TIMES (THT'S)					
Analyte	Matrix				
	Soil	Water			
Moisture	14 Days ¹	Not Applicable			
рН	7 Days ¹	15 Minutes ²			
Alkalinity	Not Applicable	24 Hours ²			
Electrical Conductivity	7 Days ¹	28 Days ¹			
Total Suspended Solids	Not Applicable	7 Days ²			
Total Dissolved Soliuds	Not Applicable	7 Days ²			
Total Solids	Not Applicable	7 Days ²			
Fixed & Volatile Solids	Not Applicable	7 Days ²			
Dusts	Not Applicable	28 Days ⁴			
Chloride	28 Days ¹	28 Days ²			
Fluoride	28 Days ¹	28 Days ²			
Sulfate	28 Days ¹	28 Days ²			
Total Cyanide	14 Days ¹	24 Hours ²			
Metals - Cations (Ca, Mg, Na, K)	6 Months ¹	6 Months ²			
Metals - Base Metals	6 Months ¹	6 Months ²			
Metals - Mercury	28 Days ¹	28 Days ²			
Metals - Paint Samples	6 Months ⁴	Not Applicable			
Hexavalent Chromium	28 Days ¹	30 Days ³			
Total Recoverable Hydrocarbons	14 Days ¹	7 Days ¹			
Semi-Volatile Organic Compounds	14 Days ¹	7 Days ¹			
Poly Chlorinated Biphenyls	14 Days ¹	7 Days ¹			
Volatile Organic Compounds	14 Days ¹	14 Days ¹			
The detailed THT's assumed the test of tes	ne appropriate sample contai	ners & preservation			

References : 1 - Victorian EPA ; 2 - APHA 21st Edition ; 3 - USEPA Method 1669 ; 4 - None Detailed, THT Arbitrarily Assigned

Groundswell laboratories

TECHNICAL HOLDING TIMES (TH	DING TIMES	(THT'S)		ANALYTICAL METHODS - SOILS
Analyte	Mai	Matrix	Literature Reference	Analysis Description
	Soil	Water		
Asbestos	Not Applicable	Not Applicable	AS4964-2000	"Method for the Qualitative Identification of Asbestos in Bulk Samples": Polarized microscopy is the primary analytical technicue.
Moisture	14 Days ¹	Not Applicable	NEPM 102	Moisture in the field moist sample is evaporated at 105±5°C. The loss in moisture is expressed as a percentage of the sample as submitted
Total Cyanide	14 Days ¹	24 Hours ²	NEPM 403 APHA 4500 CN' E	The submitted soil is caustic leached, pH>10 for 16 hours by end-over-end extraction. This extract is then distilled, trapped in a caustic solution, and quantitated colorimetrically
Metals - Base Metals	6 Months ¹	6 Months ²	NEPM Sample Preparation USEPA 200.2 USEPA 7000B	An aliquot (approx. 20%) of the homogenised submitted soil sample is dried at 35±3°C, lightly ground and screened to -2mm. Samples are then digested with nitric and hydrochloric acids for 30 minutes. Metals in solution are then quantitated by flame atomic absorption spectrophotometry.
Metals - Mercury	28 Days ¹	28 Days²	NEPM Sample Preparation USEPA 200.2 USEPA 7471A	An aliquot (approx. 20%) of the homogenised submitted soil sample is dried at 35±3°C, lightly ground and screened to -2mm. Samples are then digested with nitric and hydrochloric acids for 30 minutes. Mercury in solution is then quantitated by cold-vapour atomic absorption spectrophotometry
Hexavalent Chromium	28 Days ¹	30 Days ³	USEPA 3060A USEPA 7196A	USEPA 3060A USEPA 7196A The submitted soil is alkaline digested to extract soluble, adsorbed and precipitated forms of chromium compounds. The digest is then quantitated colorimetrically
Total Recoverable Hydrocarbons	14 Days ¹	7 Days ¹	In House method based on NEPM 506	The submitted soil is extracted with DCM:Acetone (1:1) by end-over-end extraction for 4 hours. This extract is then analysed by GC-FID
Semi-Volatile Organic Compounds	14 Days ¹	7 Days ¹	In House	The submitted soil is extracted with DCM: Acetone. This extract is then analysed by GC-MS
OCP's & Poly Chlorinated Biphenyls	14 Days ¹	7 Days ¹	In House	The submitted soil is extracted with DCM: Acetone. This extract is then analysed by dual GC-ECD.
Volatile Organic Compounds	14 Days ¹	14 Days ¹	In House	The submitted soil is extracted with methanol. This extract is then spiked into water, and analysed by P&T GC-MS.
The detailed THT's assume appropriate sample containers & preservation	d THT's assume appropria containers & preservation	tte sample		

References : 1 - Victorian EPA ; 2 - APHA 21st Edition ; 3 - USEPA Method 1669

ANALYTE – Soil	HOLDING TIME
Metals *	6 months
Mercury	28 days
Chromium VI	7 days
Monocyclic Aromatic Hydrocarbons (MAH)	14 days
Total Petroleum Hydrocarbons (TPH)	14 days
Polycyclic Aromatic Hydrocarbons (PAH)	14 days
Organochlorine Pesticides (OCP)	14 days
Polychlorinated Biphenyls (PCB)	28 days
Phenols	14 days
Cyanide	14 days
VHC / Vinyl Chloride	14 / 7 days
VOC	14 days
Asbestos	Indefinite
ANALYTE – Water	HOLDING TIME
Metals *	6 months
Mercury	30 days
Chromium VI	28 days (preserved)
Monocyclic Aromatic Hydrocarbons (MAH)	7 days
Total Petroleum Hydrocarbons (TPH)	7 days
Polycyclic Aromatic Hydrocarbons (PAH)	7 days
Organochlorine Pesticides (OCP)	7 days
Polychlorinated Biphenyls (PCB)	7 days
Phenols (speciated)	7 days
Cyanide	14 days
VHC	7 days
VOC	7 days
Ammonia	28 days (preserved)
Biological (heterotrophic and carbon utilising bacteria)	1 day
Chloride	28 days
Ferrous Iron	1 day (filtered)
Methane	14 days
Nitrate/Nitrite	28 days (filtered & frozen)
Sulphate	28 days
Sulphide (Total)	7 days

 \ast Metals include arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn)

Analyte	Method	APHA/USEPA Method
C ₆ -C ₉ – 1999 NEPM Fractions TRH (Volatile)/BTEX C ₆ -C ₁₀ – 2010 DRAFT NEPM Fractions	10g soil extracted with 20mL methanol, tumbled for 1 hour, and analysed with solvent and instrument check surrogates. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water direct injection of supplied sample (unopened) and analysis with solvent and instrument check surrogates. Analysis by capillary column Purge and Trap GCMS (mgt LabMark in-house method numbers Method: E029/E016 BTEX, Method: E004 Petroleum Hydrocarbons (TPH), Method: LM-LTM-ORG2010, Method: E005 Moisture Content). Owing to the differential responses of mass spectrometric detectors towards aliphatic and aromatic compounds, it is essential that the standard contain representatives of both groups. This standard should therefore consist of about 40% aromatic and 60% aliphatic target analytes, to be representative of a typical Australian fuel. The aromatic compounds shall comprise the components of BTEX. The aliphatics shall comprise equal proportions of all n-alkanes in the C6 to C10 range.	USEPA Method 8260B
Total Recoverable Hydrocarbons C ₁₀ - C ₃₆ – 1999 NEPM Fractions >C ₁₀ -C ₄₀ – 2010 DRAFT NEPM Fractions	Soil - 10g soil and anhydrous sodium sulfate extracted with 20mL dichloromethane/acetone (1:1), and tumbled for a minimum of 1 hour. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water - One 250ml of water sequentially extracted in a separatory funnel three times with 20mL dichloromethane. Analysis by capillary column GC/FID (mgt LabMark in-house method numbers Method: E004 Petroleum Hydrocarbons (TPH), Method: LM-LTM-ORG2010, Method: E005 Moisture Content)	USEPA Method 8015C
TPH (Silica Gel)	Exchange an aliquot of sample extract into a suitable solvent for clean-up. For example, a 1:1 dichloromethane/acetone extract should be exchanged into a suitable non-polar solvent to allow for removal of polar substances. To the solvent-exchanged extract add an appropriate weight of silica gel. Mix the extract and silica gel thoroughly (e.g. with vortex mixer) and allow the sorbent to settle before removing a portion of the extract for analysis. (mgt LabMark in-house method numbers Method: LM-LTM-ORG2010, Method: E005 Moisture Content)	USEPA Method 3630C
Phenols/PAH	Soil - 10g soil, surrogates, mixed with anhydrous sodium sulfate and extracted with 20mL dichloromethane/acetone (1:1), and tumbled for a minimum of 1 hour. Clay samples must be completely disintegrated before an aliquot is	USEPA Method 8270D

Analyte	Method	APHA/USEPA Method
	taken for analysis.	
	Water - 250ml water sample plus surrogates triple extracted with dichloromethane (base and neutrals).	
	Analysis by capillary column GC/MS (mgt LabMark in-house Methods E008.1, E008.2, E015.1, E015.2, E017.1 and E017.2, E016.1, E016.2, E017.1 and E017.2, E007.1, E007.2, E015.1, E015.2, E017.1 and E017.2 Method: E005 Moisture Content).	
Total Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	A 0.5gm portion of soil undergoes acidic microwave digestion. Analysis by ICP/MS.(mgt Labmark in-house method E022.2).	USEPA Method 6020A
Total Mercury (Hg)	0.5g soil acidic microwave digestion. Analysis by FIMS. (mgt Labmark in-house method E026.2).	USEPA Method 7471B
Filtered Metals (As, Cd, Cr, Cu, Ni, Pb ,Zn)	Filtered (0.45mm) and acidified in the field prior to analysis. Analysis by ICP/MS. (mgt LabMark inhouse method E022.1).	USEPA Method 6020A
Filtered Metals (Al, As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mo, Ni)	Filtered (0.45mm) and acidified in the field prior to analysis. Analysis by ICP/MS. (mgt LabMark inhouse method E022.1).	USEPA Method 6020A
Total Metals (Al, As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mo, Ni)	Acidified in the field prior to analysis and digested in the laboratory using aqua regia. Analysis by ICP/MS. (mgt LabMark in-house method E022.1).	USEPA Method 6020A
Filtered Mercury (Hg)	Filtered, oxidation and final reduction. Analysis by FIMS. (mgt LabMark in-house method E022.1).	USEPA Method 7471B
Conductivity	Direct measurement using a calibrated meter and electrode. (mgt LabMark in-house method E032 Electrical conductivity (EC)).	APHA Method 2520 B
рН	Direct measurement using a calibrated meter and electrode. (mgt LabMark in-house method E018 pH).	APHA Method 4500-H [⁺]
Suspended Solids (SS)	Gravimetric measurement of the residue filtered through a GFC filter. (mgt LabMark in-house method 4100 Total Suspended Solids dried at 103-105°C).	APHA Method 2540 D
Ammonia (as N)	Alkaline phenol and hypochlorite react with ammonia to form indophenol blue that is proportional to the ammonia concentration that is determined colorimetrically. (mgt LabMark in- house method E036/E050 Ammonia as N).	APHA Method 4500-N
Phosphorus (as P)	Acid digestion of phosphorus species to form a molybdophosphoric acid complex that is reduced to molybdenum blue which is proportional to the phosphorus concentration that is determined colorimetrically. (mgt LabMark in-house method E038 /E052 Total Phosphorus (as P)).	APHA Method 4500-P

Analyte	Method	APHA/USEPA Method
C ₆ -C ₉ – 1999 NEPM Fractions TRH (Volatile)/BTEX C ₆ -C ₁₀ – 2010 DRAFT NEPM Fractions	10g soil extracted with 20mL methanol, tumbled for 1 hour, and analysed with solvent and instrument check surrogates. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water direct injection of supplied sample (unopened) and analysis with solvent and instrument check surrogates. Analysis by capillary column Purge and Trap GCMS (mgt LabMark in-house method numbers Method: E029/E016 BTEX, Method: E004 Petroleum Hydrocarbons (TPH), Method: LM-LTM-ORG2010, Method: E005 Moisture Content). Owing to the differential responses of mass spectrometric detectors towards aliphatic and aromatic compounds, it is essential that the standard contain representatives of both groups. This standard should therefore consist of about 40% aromatic and 60% aliphatic target analytes, to be representative of a typical Australian fuel. The aromatic compounds shall comprise the components of BTEX. The aliphatics shall comprise equal proportions of all n-alkanes in the C6 to C10 range.	USEPA Method 8260B
Total Recoverable Hydrocarbons C ₁₀ - C ₃₆ – 1999 NEPM Fractions >C ₁₀ -C ₄₀ – 2010 DRAFT NEPM Fractions	Soil - 10g soil and anhydrous sodium sulfate extracted with 20mL dichloromethane/acetone (1:1), and tumbled for a minimum of 1 hour. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water - One 250ml of water sequentially extracted in a separatory funnel three times with 20mL dichloromethane. Analysis by capillary column GC/FID (mgt LabMark in-house method numbers Method: E004 Petroleum Hydrocarbons (TPH), Method: LM-LTM-ORG2010, Method: E005 Moisture Content)	USEPA Method 8015C
TPH (Silica Gel)	Exchange an aliquot of sample extract into a suitable solvent for clean-up. For example, a 1:1 dichloromethane/acetone extract should be exchanged into a suitable non-polar solvent to allow for removal of polar substances. To the solvent-exchanged extract add an appropriate weight of silica gel. Mix the extract and silica gel thoroughly (e.g. with vortex mixer) and allow the sorbent to settle before removing a portion of the extract for analysis. (mgt LabMark in-house method numbers Method: LM-LTM-ORG2010, Method: E005 Moisture Content)	USEPA Method 3630C
Phenols/PAH	Soil - 10g soil, surrogates, mixed with anhydrous sodium sulfate and extracted with 20mL dichloromethane/acetone (1:1), and tumbled for a minimum of 1 hour. Clay samples must be completely disintegrated before an aliquot is	USEPA Method 8270D

Analyte	Method	APHA/USEPA Method
	taken for analysis.	
	Water - 250ml water sample plus surrogates triple extracted with dichloromethane (base and neutrals).	
	Analysis by capillary column GC/MS (mgt LabMark in-house Methods E008.1, E008.2, E015.1, E015.2, E017.1 and E017.2, E016.1, E016.2, E017.1 and E017.2, E007.1, E007.2, E015.1, E015.2, E017.1 and E017.2 Method: E005 Moisture Content).	
Total Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	A 0.5gm portion of soil undergoes acidic microwave digestion. Analysis by ICP/MS.(mgt Labmark in-house method E022.2).	USEPA Method 6020A
Total Mercury (Hg)	0.5g soil acidic microwave digestion. Analysis by FIMS. (mgt Labmark in-house method E026.2).	USEPA Method 7471B
Filtered Metals (As, Cd, Cr, Cu, Ni, Pb ,Zn)	Filtered (0.45mm) and acidified in the field prior to analysis. Analysis by ICP/MS. (mgt LabMark inhouse method E022.1).	USEPA Method 6020A
Filtered Metals (Al, As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mo, Ni)	Filtered (0.45mm) and acidified in the field prior to analysis. Analysis by ICP/MS. (mgt LabMark inhouse method E022.1).	USEPA Method 6020A
Total Metals (Al, As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mo, Ni)	Acidified in the field prior to analysis and digested in the laboratory using aqua regia. Analysis by ICP/MS. (mgt LabMark in-house method E022.1).	USEPA Method 6020A
Filtered Mercury (Hg)	Filtered, oxidation and final reduction. Analysis by FIMS. (mgt LabMark in-house method E022.1).	USEPA Method 7471B
Conductivity	Direct measurement using a calibrated meter and electrode. (mgt LabMark in-house method E032 Electrical conductivity (EC)).	APHA Method 2520 B
рН	Direct measurement using a calibrated meter and electrode. (mgt LabMark in-house method E018 pH).	APHA Method 4500-H [⁺]
Suspended Solids (SS)	Gravimetric measurement of the residue filtered through a GFC filter. (mgt LabMark in-house method 4100 Total Suspended Solids dried at 103-105°C).	APHA Method 2540 D
Ammonia (as N)	Alkaline phenol and hypochlorite react with ammonia to form indophenol blue that is proportional to the ammonia concentration that is determined colorimetrically. (mgt LabMark in- house method E036/E050 Ammonia as N).	APHA Method 4500-N
Phosphorus (as P)	Acid digestion of phosphorus species to form a molybdophosphoric acid complex that is reduced to molybdenum blue which is proportional to the phosphorus concentration that is determined colorimetrically. (mgt LabMark in-house method E038 /E052 Total Phosphorus (as P)).	APHA Method 4500-P

SAMPLE PRESERVATION AND SAMPLING GUIDE

Soils, Sediments & Solid Matrices

mgt-LabMark Recommended Preservation and Container Guide

Parameter	Container	Lab Analysis Portion (g) ⁽¹⁾	mgt-LabMark Preferred Preservation	Recommended Holding Time
Acid Sulphate Soil (SPOCAS/CrS)	P or G	50	6°C / freezing may limit loss of integrity	24 hours [#]
			6°C, Zero Headspace	14 days*
Asbestos		50		indefinite
BTEX / TPH (C6-C9)		20	6°C, Zero Headspace	14 days*
			6°C	14 days*
			6°C	14 days
Dioxins and Furans		250	6°C, dark	28 days
xplosives		50	6°C	14 days*
			6°C	14 days
IRAF (aliphatic / aromatic speciation of TPH)			6°C, Zero Headspace	14 days*
norganics - general anion, cations and CEC	G or P	20	6°C	28 days
fetals (except Hg & Cr VI)	G or P	20	NR	6 months
lercury or Chromium VI	G or P	20	6°C	28 days
licro (E. Coli, FC, TC etc.)			6°C	24 hours
loisture	G or P		6°C	14 days
H or EC	G or P		6°C	
			6°C	14 days*
henoxy Acid Herbicides		20	6°C	14 days*
ulphur/Sulphides	G	20	6°C	7 days
ny SVOCs including - OCs, OPs, PCBs, AHs, Phthalates, SVCCs plus TPH (C10- 36), Glyphosates, TBTs			6°C	14 days*
VOC's (USEPA 8270 list)	G	20	6°C	14 days*
ICLP or AS4439.2/.3 ^{##}	G	250	6°C	7 days ###
CLP (Zero Headspace) ##		250	6°C, Zero Headspace	
otal Organic Carbon (or TOM)		20	6°C, Zero Headspace	28 days
PH (C6-C9) plus BTEX			6°C, Zero Headspace	14 days*
PH/TRH (C10-C36)			6°C	14 days*
/OCs / VHCs / VACs / THMs	G	20	6°C, Zero Headspace	14 days*
		Common Suites of ana	······	e generale e contra e contra e contra
PH, BTEX, Metals, Moisture			6°C, Zero Headspace	
PH, BTEX, Metals, PAH, SVOCs, VOCs, pH, loisture			6°C, Zero Headspace	See above
PH, BTEX, Metals, PAH, OCPs, PCBs, TCLP, loisture	G	250	6°C, Zero Headspace	See above
rip Spikes for VOCs (prepared in the Lab)	G	full jar	<-10°C, Zero Headspace	14 days***
ypical sample weights contained in standard jars	(zero headspace)	28	50 mL jar = 350-420 g	

REFERENCES: USEPA SW846, NEPM, EPA VIC, ISO5667, Queensland Acid Sulfate Soils Management Advisory Committee (QASSMAC), Environmental Analysis Laboratory (EAL) Please note Maximum THT's may vary upon the guideline document referenced.

NOTES:	(1)	We recommend that you provide additional sample on the 1st, 11th, 21st. 31st etc sample for performance of Duplicates / Matrix Spikes. Note however that Matrix Spike determinations are not appropriate for all tests.
	*	Extract within 14 days and analyse within 40 days (mgt-LabMark's preference is to extract within 7 days for volatiles where sufficient time available).
	**	mgt-LabMark's preference is to analyse as soon as possible
	***	Shelf life in matrix (sand) is low if not frozen, therefore freeze if storing or return to lab with samples immediately
	#	where acidity (hence liming rates) is captured in actual and potential acidity, analysis within one week should be satisfactory
	##	Time from sampling date to tumbling (water THTs for leachate apply)
	###	except Metals/OCPs/PCBs 28 days
CONTAINERS:	Р	= Plastic (HDPE or equivalent, teflon lined lid), batch tested
	G	= Glass (teflon lined lid), batch tested

Soil Samples are discarded 3 months from the date received mgt-LabMark Environmental - Contact Details

	ingt-Labilark Environmenta	i - Oomact Details	
LOCATION	DELIVERY ADDRESS	TELEPHONE	FACSIMILE
Sydney	Units F3-F6, Lane Cove Business Park, 16 Mars Rd. Lane Cove NSW	(02) 8215 6222	(02) 9476 8219
Melbourne	2-5 Kingston Town Close, Oakleigh VIC 3166	(03) 9564 7055	(03) 92564 7190
Brisbane	Unit 1/21 Smallwood Place, Murarrie QLD 4172	(07) 3902 4600	(07) 3902 4646
Adelaide	140 Richmond Road, Marleston SA 5033	(08) 8443 4430	Mobile - 0438 424 511
Perth	Unit 5, 91 Leach Hwy, Kewdale WA	(08) 9353 6535	Mobile - 0418 856 576
Darwin	Unit 3, 83 Coonawarra Rd, Winellie NT 0800	(08) 8947 1557	Mobile - 0428 489 614
Newcastle	Unit 5, 166 Hannell Street, Wickham NSW	(02) 4902 4830	Mobile - 0410 220 750

SAMPLE PRESERVATION AND SAMPLING GUIDE Liquid Matrices

Recommended Preservation and Container Guide

Parameter	Container	Lab Analysis Portion mL ⁽²⁾	mgt-LabMark Preferred Preservation	Recommended Holding Times
Acidity/Alkalinity	P or G	200	6°C	14 days**
Alcohols	PT	2 x vials	pH<2 (HCl), 6°C, Zero headspace	14 days ⁽³⁾
Ammonia-N	P or G	200	pH<2 (H ₂ SO ₄), 6°C ⁽¹⁾ /site filter and freeze	28 days
BOD ₅	P or G	2 x 500	6°C, Zero headspace	48 Hours [#]
Bromate	P	50	6°C	28 days
Bromide	Р	50	6°C	28 days
BTEX plus TPH (C6-C9)	PT	2 x vials	pH<2 (HCl or H ₂ SO ₄), 6°C, Zero headspace	14 days (3)
Carbamates/Dioxins/Furans	G	500	6°C	1 month
Carbon, Total Organic (TOC)	G	100	pH<2 (H ₂ SO _{4 or HCl}), 6°C	28 days
Carbon, Dissolved Organic (DOC)		100	Field filter at 0.45um then pH<2 (H ₂ SO _{4 or HCI}), 6°C	28 days
Cations	Р	50	6°C, pH<2 (HNO ₃)	6 months ^{APHA}
Chlorate	Р	50	6°C	7 days
Chloride	Р	50	6°C	28 days
Chlorite	Р	50	6°C	24 hours ⁽⁵⁾
Chlorine (residual)	-		Field test	Note (5)
Chlorophyll-a (Vol' PQL dependant)	Dark P	500-2000	Unfiltered Dark, 6°C or Filtered residue	24 Hours##
Chromium VI (hexavalent Cr)	P	100	filtered, unpreserved / pH 8-9 (NaOH), 6°C ⁽¹⁾	1 day / 28 days ^{(1)APHA}
COD	G	100	pH<2 (H ₂ SO ₄), 6°C ⁽¹⁾	28 days
Colour	P P	100	6°C	2 days ^{AS}
Conductivity (EC) or Salinity		50	6°C, Zero headspace, 6oC	28 days
Cyanide (Total/Amenable)	P	100	pH >12 (NaOH), 6°C Dark	14 days ⁽⁶⁾
Cyanide (Free / WAD)	Р	100	Free neutral, WAD pH >12 (NaOH), 6oC Dark Field test	14 days ^{(6)##}
Dissolved Oxygen Explosives	G	500	Field test 6°C	Note (5) 7 days*
Explosives Ferrous/Ferric Iron ⁽⁴⁾	P	100	6°C filtered pH <2 (HCI), 6°C, Dark, Zero Headspace	7 days ⁻ 7 days ^{ISO}
Fluoride	P	50		28 days
Formaldehyde	G	100	6°C	7 days
Hardness	P	50	6°C 6°C, pH<2 (HNO₃)	6 months
lodate	P	50	6°C	1 month
lodide	P	50		1 month
Ion Balance	P	500-1000	See Individual Analytes in price book	
Metals – Total (Recoverable)	P	100	pH<2 (HNO ₃)	6 months
Metals – Dissolved	P	100	Field Filter at 0.45 um then pH<2 (HNO ₃)	6 months
Mercury – (Total Recoverable)	Р	100	pH<2 (HNO ₃)	28 days
Mercury – Dissolved	P	100	Field Filter at 0.45 um then pH<2 (HNO ₃)	28 days
Methane (Ethane/Ethene)	PT	2 x vials	Half fill the vials, store upside down at 6°C	14 days
Nitrogen: TKN	P or G	100	pH<2 (H ₂ SO ₄), 6°C ⁽¹⁾	28 days
Nitrate / NOx	P or G	50	unpreserve 6°C / pH<2 (HCI), 6°C	2 days ^{##} / 7 days
Nitrite	P or G	50	unpreserve 6°C	2 days
Nitrogen: Total N	-		TKN and NOx sample bottles are required	-
Oil & Grease	G	2 x 500	pH<2 (H₂SO₄ or HCI), 6°C	28 days
OC/OP Pesticides – see SVOCs	G	see SVOC	6°C	7 days*
PAHs – see SVOCs below	G	see SVOC	6°C	7 days*
pH / free CO2 / total CO ₂	P or G	100	Field Test, 6°C	Note (5)
Phenolics (total)	P or G	100	pH<2 (H₂SO₄),6°C	28 days ^{APHA}
Phenols – speciated	G	see SVOC	6°C	7 days*
Phenoxy Acid Herbicides	G	500	6°C, pH 1-2 HCI	14 days
Phosphate (ortho)	P or G	50	6°C	2 days## 1 month filtered ^{ISO}
Phosphorus (Total filtered or unfiltered)	Р	100	pH<2 (HNO ₃)	1 month
Solids (suspended, dissolved etc)	P	500-1000	6°C	7 days
Sulphate	Р	50	6°C	28 days
Sulphide (Total)	Р	200	6°C (Zinc Acetate/NaOH pH>9) zero headspace	7 Days
Sulphide (Dissolved)	Р	100	6°C	24 hours
Surfactants – anionic (MBAS)	G	250	6°C/preserved with formalin	2 days/4 days preserved with formalin to 1%
SVOCs including – OCs, OPs, PCBs, PAHs, Phthalates (normal level) plus TPH (C10-C36)	G	2 x 500	6°C	7 days*
Low or Trace level Organics		4 x 500		
SVOC's (USEPA 8270 list)	G	see SVOC	6°C	7 days*
TPH (C6-C9)	PT	As for BTEX no additional vials needed	pH<2 (HCI), 6°C, Zero headspace	14 days ⁽³⁾
TPH (C10-C36)	G	As for SVOC 'normal' no additional needed	6°C	7 days*
Turbidity	P or G	100	Analyse Immediately, dark, 6°C	48 Hours
VOCs / VHCs / VACs / THMs / MTBEs	PT	2xvials	pH<2 (HCl or H ₂ SO ₄), 6°C, Zero headspace ⁽⁷⁾	14 days (3)
Microbiological	P/S	120	6°C	24 hours
Micro' - (in Chlorinated Water) Coliforms -	P/S	500 (4*120)	6°C - 0.008% Na ₂ S ₂ O ₃ .	24 hours
Ecoli				.L
Micro' – (in Chlorinated Water)	P/S	120	6ºC - 0.008% Na ₂ S ₂ O ₃ .	24 hours

REFERENCES: APHA 21st Edition, USEPA SW846, ISO 5667.3, EPA VIC and AS/NZS 5667.1 1998 Please note Maximum HT's may vary upon the guideline document referenced.

NOTES:	(1)	This test may not require preservation if received and analysed within 24 hours of sampling; this must be pre-arranged with the laboratory.
	(2)	We recommend that you provide additional sample on the 1st, 11th, 21st, 31st etc sample for performance of Duplicates / Matrix Spikes. (Note however that Matrix spike determinations are not appropriate for all tests).
	(3)	USEPA recommends 14 days, Australian Standard recommends 7 days.
	(4)	If Dissolved Metals are requested, the Ferrous Iron sample must be field filtered before being preserved
	(5)	This analyte should be determined in the field, these tests will not be measured for compliance to holding time but are analysed on receipt
	(6)	Holding Time is reduced to 24hrs with the presence of sulphides. Contact the laboratory if the presence of sulphides is suspected
	(7)	Sodium Bisulfate is an alternative preservation for VOC analysis upon request
	•	This holding time requires the samples to be extracted within 7 days and analysed within 40 days.
	**	The mgt-LabMark aim is to perform these analyses within 2 days (where sufficient time available).
	#	The holding times may be extended to one month if the sample is frozen
	##	The holding times may be extended to 28 days if the sample is filtered then frozen.
CONTAINERS:	Р	= Plastic (HDPE or equivalent, all teflon lined), batch tested
	PT	= Purge & Trap VOA Vial (with teflon liner), batch tested
	G	= Glass (all teflon lined), batch tested
	P/S	= Plastic Sterile, batch tested
		Liquid samples are discarded 4 weeks from the date received

APPENDIX O

LABORATORY CERTIFICATES

Aargus P/L 446 Parramatta Road Petersham **NSW 2049**

Certificate of Analysis NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Report

396799-S

Mark Kelly

Client Reference Received Date

MARRICKVILLE ES5611-2 Oct 18, 2013

Client Sample ID			SS1	SS2	SS3
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S13-Oc14519	S13-Oc14520	S13-Oc14521
Date Sampled			Oct 16, 2013	Oct 16, 2013	Oct 16, 2013
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	90	150	< 50
TRH C29-C36	50	mg/kg	140	130	< 50
TRH C10-36 (Total)	50	mg/kg	230	280	< 50
BTEX	l.				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	128	121	123
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	230	300	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons		_			
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	0.6	< 0.5
Anthracene	0.5	mg/kg	0.5	1.2	< 0.5
Benz(a)anthracene	0.5	mg/kg	1.8	4.3	< 0.5
Benzo(a)pyrene	0.5	mg/kg	1.8	4.8	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	3.7	4.8	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	2.8	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	2.8	2.5	< 0.5
Chrysene	0.5	mg/kg	1.4	3.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	0.6	< 0.5
Fluoranthene	0.5	mg/kg	3.2	7.8	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	1.0	2.3	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			SS1 Soil	SS2 Soil	SS3 Soil
Eurofins mgt Sample No.			S13-Oc14519	S13-Oc14520	S13-Oc14521
Date Sampled			Oct 16, 2013	Oct 16, 2013	Oct 16, 2013
Test/Reference	LOR	Unit	000 10, 2010		
Polycyclic Aromatic Hydrocarbons	LOR	Unit			
Phenanthrene	0.5	mg/kg	1.3	4.5	< 0.5
Pyrene	0.5	mg/kg	3.0	7.7	< 0.5
Total PAH	0.5	mg/kg	21	47	< 0.5
Benzo(a)pyrene TEQ*	0.5	mg/kg	3.0	6.9	0.6
2-Fluorobiphenyl (surr.)	1	%	95	90	103
p-Terphenyl-d14 (surr.)	1	%	109	96	114
Organochlorine Pesticides	1	70	100	50	
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05
4.4-DDE	0.05		< 0.05	< 0.05	< 0.05
4.4-DDE 4.4'-DDT	0.05	mg/kg mg/kg	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	83	92	122
Tetrachloro-m-xylene (surr.)	1	%	85	88	90
Polychlorinated Biphenyls (PCB)					
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	83	92	122
Speciated Phenols					
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	-	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	-	< 0.5
2.4.5-Trichlorophenol	0.5	mg/kg	< 0.5	-	< 0.5
2.4.6-Trichlorophenol	0.5	mg/kg	< 0.5	-	< 0.5
Phenol	0.5	mg/kg	< 0.5	-	< 0.5
2-Methylphenol (o-Cresol)	0.5	mg/kg	< 0.5	-	< 0.5
3&4-Methylphenol (m&p-Cresol)	1	mg/kg	< 1	-	< 1
2-Chlorophenol	0.5	mg/kg	< 0.5	-	< 0.5

Client Sample ID Sample Matrix			SS1 Soil	SS2 Soil	SS3 Soil
Eurofins mgt Sample No.			S13-Oc14519	S13-Oc14520	S13-Oc14521
Date Sampled			Oct 16, 2013	Oct 16, 2013	Oct 16, 2013
Test/Reference	LOR	Unit			
Speciated Phenols					
2-Nitrophenol	0.5	mg/kg	< 0.5	-	< 0.5
4-Chloro-3-methylphenol	0.5	mg/kg	< 0.5	-	< 0.5
Pentachlorophenol	1	mg/kg	< 1	-	< 1
Phenol-d5 (surr.)	1	%	87	-	95
Cyanide (total)	1	mg/kg	< 1	-	< 1
% Moisture	0.1	%	11	19	31
Heavy Metals					
Arsenic	2	mg/kg	39	8.5	< 2
Cadmium	0.4	mg/kg	< 0.4	1.8	1.7
Chromium	5	mg/kg	18	15	27
Copper	5	mg/kg	86	110	5.5
Lead	5	mg/kg	450	330	46
Mercury	0.05	mg/kg	0.32	0.31	< 0.05
Nickel	5	mg/kg	22	13	10
Zinc	5	mg/kg	1700	720	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite 7A			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 22, 2013	14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
BTEX	Sydney	Oct 22, 2013	14 Day
- Method: E029/E016 BTEX			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 22, 2013	14 Day
- Method: LM-LTM-ORG2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 22, 2013	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Speciated Phenols	Sydney	Oct 22, 2013	14 Day
- Method: E008 Speciated Phenols			
Metals M8	Sydney	Oct 22, 2013	28 Day
- Method: E022 Acid Extractable metals in Soils & E026 Mercury			
Eurofins mgt Suite 13			
Organochlorine Pesticides	Sydney	Oct 22, 2013	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	Oct 22, 2013	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Cyanide (total)	Sydney	Oct 22, 2013	14 Day
- Method: E040 /E054 Total Cyanide			
% Moisture	Sydney	Oct 22, 2013	28 Day
- Method: E005 Moisture Content			

	mgt
ns	
ofil	
eur	
•	

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Brisbane 1/21 Smallwood Place Murarine QLD 4172 Phone: +-61 7 3902 4600 NATA # 1261 Site # 20794 Sydney Unit F6, Building F 16 Mars Road 16 Mars Road 16 Mars Road Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +613 8564 5000 NATA # 1261 Site # 1254 & 14271

% Moisture × End End % Moisture × × × ×	s611-2 betail betail betail betail betail betail betail betail betail betail betail betail S 14271 Soli Soli Soli Soli Soli Soli Soli Soli	Matrix LAB ID S13-Oc14519
	betail betail i & 14271 ng Matrix	Detail Detail 54 & 14271 64 Matrix

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/l: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100ml · Most Probable Number of organisms per 100 millilitres	

TERMS

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

200	~	~	-0-	
		0		
		<u> </u>		

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			. I			
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions E004					
Petroleum Hydrocarbons (TPH)						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank		1			1	
BTEX E029/E016 BTEX					-	
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank		1	1	1	1	
Total Recoverable Hydrocarbons - 2013 NEPM Frac ORG2010	tions LM-LTM-					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank			I I	1		
Polycyclic Aromatic Hydrocarbons E007 Polyaroma (PAH)	tic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Organochlorine Pesticides E013 Organochlorine Pe	sticides (OC)					
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank		1		-	
Polychlorinated Biphenyls (PCB) E013 Polychlo (PCB)	rinated Biphenyls				
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB	mg/kg	0	0.5	Pass	
Method Blank					
Speciated Phenols E008 Speciated Phenols					
2.4-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5	0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4.6-Trichlorophenol	mg/kg	< 0.5	0.5	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.5	0.5	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 1	1	Pass	
2-Chlorophenol	mg/kg	< 0.5	0.5	Pass	
2-Nitrophenol	mg/kg	< 0.5	0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 0.5	0.5	Pass	
Pentachlorophenol	mg/kg	< 1	1	Pass	
Method Blank				1	
Cyanide (total)	mg/kg	< 1	1	Pass	
Method Blank	ilig/kg			F 855	
Method Blank Metals M8 E022 Acid Extractable metals in Soils	& E026 Mercury				
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	ing///g			1 400	
Total Recoverable Hydrocarbons - 1999 NEPM F Petroleum Hydrocarbons (TPH)	ractions E004				
TRH C6-C9	%	93	70-130	Pass	1
TRH C10-C14	%	78	70-130	Pass	
LCS - % Recovery	/0		1 70-130	1 033	
BTEX E029/E016 BTEX					
Benzene	%	98	70-130	Pass	
Donzolic	/0	30	70-130	Pass	<u> </u>

Ethylberzene % 97 70-130 Pass m&p-Xylenes % 102 70-130 Pass 7 Xylenes 70al 70al 70al Pass 7 Xylenes 70al 70al 70al Pass 7 Xylenes 70al 70al 70al Pass 7 CS * & Racovery 70al 70al 70al Pass 7 CR2010 % 82 70al 70al Pass 7 Racovery 70al 70al 70al Pass 7 7 7 7 7 70al Pass 7 CAS * & Recovery 70al 70al 7 70al 7	
o-Xylene % 100 70-130 Pass Xylenes - Total % 101 70-130 Pass CSS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions LM-TM- ORG2010 % 71 70-130 Pass TRH C6C-C10 % 82 70-130 Pass 70-130 Pass LCS - % Recovery 70-130 % 82 70-130 Pass LCS - % Recovery 89 70-130 Pass 70-130 Pass LCS - % Recovery 70-130 Pass 70-130 Pass 70-130 Pass LCS - % Recovery 70-130 Pass	
Xylenes - Total % 101 70-130 Pass LCS - % Recovery <	
LCS - % Recovery Image: Control of the second	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions LM—VNaphthaleneNaph	
ORG2010 Image	
TRH C6-C10 % 82 70-130 Pass LCS - % Recovery 70-130 Pass 70-130 Pass CS - % Recovery 70-130 Pass Acenaphthene % 91 70-130 Pass Acenaphthylene % 94 70-130 Pass Acenaphthylene % 94 70-130 Pass Acthracene % 85 70-130 Pass Benz(a)anthracene % 103 70-130 Pass Benzo(a)pyrene % 104 70-130 Pass Benzo(a)pyrene % 104 70-130 Pass Benzo(a)pyrene % 97 70-130 Pass Benzo(a)pyrene % 92 70-130 Pass Benzo(a)pyrene % 92 70-130 Pass Benzo(a)pyrene % 92 70-130 Pass Benzo(a)pyrene % 94 70-130 Pass	
TRH > C10-C16 % 89 70-130 Pass LCS - % Recovery	
TRH >C10-C16 % 89 70-130 Pass LCS - % Recovery ////////////////////////////////////	
Polycyclic Aromatic Hydrocarbons E007 Polyaromatic Hydrocarbons Image: State Sta	
Polycyclic Aromatic Hydrocarbons E007 Polyaromatic Hydrocarbons Image: State Sta	
Acenaphthene % 91 70-130 Pass Acenaphthylene % 94 70-130 Pass Acthracene % 85 70-130 Pass Benz(a)anthracene % 103 70-130 Pass Benzo(a)pytrene % 104 70-130 Pass Benzo(b)fluoranthene % 104 70-130 Pass Benzo(b)fluoranthene % 104 70-130 Pass Benzo(b)fluoranthene % 101 70-130 Pass Benzo(b)fluoranthene % 101 70-130 Pass Chrysene % 92 70-130 Pass Fluoranthene % 94 70-130 Pass Fluorene % 94 70-130 Pass Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Pyrene % 95 70-130 Pass	
Acenaphthylene % 94 70-130 Pass Anthracene % 85 70-130 Pass Benz(a)anthracene % 103 70-130 Pass Benz(a)anthracene % 97 70-130 Pass Benzo(a)pyrene % 97 70-130 Pass Benzo(k)fluoranthene % 104 70-130 Pass Benzo(k)fluoranthene % 92 70-130 Pass Benzo(k)fluoranthene % 101 70-130 Pass Dibenz(a.h)anthracene % 96 70-130 Pass Fluoranthene % 99 70-130 Pass Indeno(1.2.3-cd)pyrene % 84 70-130 Pass Indeno(1.2.3-cd)pyrene % 97 70-130 Pass Pyrene % 90 70-130 Pass Indenof.1.2.3-cd)pyrene % 90 70-130 Pass Pyrene % 90 70-130	
Anthracene % 85 70-130 Pass Benz(a)anthracene % 103 70-130 Pass Benz(a)anthracene % 103 70-130 Pass Benz(a)anthracene % 97 70-130 Pass Benzo(a)pyrene % 97 70-130 Pass Benzo(bå)fluoranthene % 92 70-130 Pass Benzo(s)fuoranthene % 92 70-130 Pass Benzo(s)fuoranthene % 96 70-130 Pass Chrysene % 96 70-130 Pass Dibenz(a.h)anthracene % 96 70-130 Pass Fluoranthene % 99 70-130 Pass Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Pyrene % 95 70-130 Pass LCS - % Recovery V Y 94 70-130<	
Benz(a)anthracene % 103 70-130 Pass Benzo(a)pyrene % 97 70-130 Pass Benzo(b&i)fluoranthene % 104 70-130 Pass Benzo(b.ki)fluoranthene % 92 70-130 Pass Benzo(k/fluoranthene % 92 70-130 Pass Benzo(k/fluoranthene % 96 70-130 Pass Chrysene % 96 70-130 Pass Dibenz(a,h)anthracene % 96 70-130 Pass Fluoranthene % 99 70-130 Pass Fluorene % 94 70-130 Pass Indeno(1.2.3-cd)pyrene % 94 70-130 Pass Naphthalene % 90 70-130 Pass Pyrene % 90 70-130 Pass Chlordanes - Total % 90 70-130 Pass 4.4·DDD % 91 70-130 Pas	
Benzo(a)pyrene % 97 70-130 Pass Benzo(b&j)fluoranthene % 104 70-130 Pass Benzo(g.h.i)perylene % 92 70-130 Pass Benzo(k)fluoranthene % 101 70-130 Pass Chrysene % 96 70-130 Pass Dibenz(a.h)anthracene % 96 70-130 Pass Fluoranthene % 99 70-130 Pass Fluorene % 99 70-130 Pass Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Pyrene % 90 70-130 Pass Chlordanes - Total % 90 70-130 Pass Chlordanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDE % 96 70-130 Pass </td <td></td>	
Benzo(bk3)/fluoranthene % 104 70-130 Pass Benzo(g.h.i)perylene % 92 70-130 Pass Benzo(g.h.i)perylene % 101 70-130 Pass Benzo(k)fluoranthene % 101 70-130 Pass Chrysene % 96 70-130 Pass Dibenz(a.h)anthracene % 84 70-130 Pass Fluoranthene % 99 70-130 Pass Fluoranthene % 94 70-130 Pass Indeno(1.2.3-cd)pyrene % 94 70-130 Pass Naphthalene % 90 70-130 Pass Pyrene % 90 70-130 Pass Chordanes - Total % 90 70-130 Pass LCS - % Recovery V 97 70-130 Pass 4.4'-DDD % 94 70-130 Pass 4.4'-DDE % 96 70-130 Pass <td></td>	
Benzo(p.i)perylene % 92 70-130 Pass Benzo(k)fluoranthene % 101 70-130 Pass Chrysene % 96 70-130 Pass Dibenz(a.h)anthracene % 84 70-130 Pass Fluoranthene % 99 70-130 Pass Fluoranthene % 94 70-130 Pass Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Phenanthrene % 90 70-130 Pass Pyrene % 90 70-130 Pass Chordanes - Total % 90 70-130 Pass 4.4'-DDD % 94 70-130 Pass 4.4'-DDE % 94 70-130 Pass 4.4'-DD % 97 70-130 Pass 4.4'-DD % 96 70-130 Pass 4.4	
Benzok/fluoranthene % 101 70-130 Pass Chrysene % 96 70-130 Pass Dibenz(a.h)anthracene % 84 70-130 Pass Fluoranthene % 99 70-130 Pass Fluoranthene % 94 70-130 Pass Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Phenanthrene % 90 70-130 Pass Pyrene % 90 70-130 Pass LCS - % Recovery % 90 70-130 Pass Chlordanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDE % 96 70-130 Pass a-BHC % 96 70-130 Pass Aldrin % 93 70-130 Pass a-BHC<	
Chrysene % 96 70-130 Pass Dibenz(a.h)anthracene % 84 70-130 Pass Fluoranthene % 99 70-130 Pass Fluoranthene % 99 70-130 Pass Fluorene % 94 70-130 Pass Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Phenanthrene % 90 70-130 Pass Pyrene % 95 70-130 Pass LCS - % Recovery 70-130 Pass Chlordanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDE % 96 70-130 Pass a-BHC % 96 70-130 Pass Aldrin % 103 70-130 Pass b-BHC <td< td=""><td></td></td<>	
Dibenz(a.h)anthracene % 84 70-130 Pass Fluoranthene % 99 70-130 Pass Fluorene % 94 70-130 Pass Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Phenanthrene % 90 70-130 Pass Pyrene % 95 70-130 Pass LCS - % Recovery 70-130 Pass Chlordanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDT % 96 70-130 Pass a-BHC % 96 70-130 Pass a-BHC % 93 70-130 Pass a-BHC % 93 70-130 Pass a-BHC % 86 70-130 Pass b-BHC %	
Fluoranthene % 99 70-130 Pass Fluorene % 94 70-130 Pass Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Phenanthrene % 90 70-130 Pass Pyrene % 95 70-130 Pass LCS - % Recovery % 95 70-130 Pass Chlordanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDE % 96 70-130 Pass a-BHC % 93 70-130 Pass Aldrin % 101 70-130 Pass b-BHC % 86 70-130 Pass Dieldrin % 85 70-130 Pass	
Fluorene % 94 70-130 Pass Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Phenanthrene % 90 70-130 Pass Pyrene % 90 70-130 Pass LCS - % Recovery % 95 70-130 Pass Chlordanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDE % 96 70-130 Pass 4.4'-DDT % 96 70-130 Pass a-BHC % 93 70-130 Pass Aldrin % 103 70-130 Pass b-BHC % 86 70-130 Pass Dieldrin % 85 70-130 Pass	
Indeno(1.2.3-cd)pyrene % 87 70-130 Pass Naphthalene % 90 70-130 Pass Pass Phenanthrene % 90 70-130 Pass Pass Pyrene % 95 70-130 Pass Pass LCS - % Recovery % 95 70-130 Pass Pass Organochlorine Pesticides E013 Organochlorine Pesticides (OC) Chlordanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDE % 96 70-130 Pass 4.4'-DDT % 93 70-130 Pass a-BHC % 93 70-130 Pass Aldrin % 103 70-130 Pass b-BHC % 86 70-130 Pass Dieldrin % 85 </td <td></td>	
Naphthalene % 90 70-130 Pass Phenanthrene % 90 70-130 Pass Pass Pyrene % 95 70-130 Pass Pass LCS - % Recovery % 95 70-130 Pass Pass Chlordanes - Total % 94 70-130 Pass Pass 4.4'-DDD % 94 70-130 Pass Pass 4.4'-DDE % 96 70-130 Pass Pass 4.4'-DDE % 96 70-130 Pass Pass 4.4'-DDE % 96 70-130 Pass Pass 4.4'-DDT % 93 70-130 Pass Pass 4.4'-DDT % 93 70-130 Pass Pass Pass 4.H'DT % 93 70-130 Pass Pass <td< td=""><td></td></td<>	
Phenanthrene % 90 70-130 Pass Pyrene % 95 70-130 Pass LCS - % Recovery Organochlorine Pesticides E013 Organochlorine Pesticides (OC) ///// //// //// Chlordanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDE % 96 70-130 Pass 4.4'-DDT % 93 70-130 Pass a-BHC % 93 70-130 Pass Aldrin % 101 70-130 Pass b-BHC % 86 70-130 Pass d-BHC % 85 70-130 Pass Dieldrin % 96 70-130 Pass	
Pyrene % 95 70-130 Pass LCS - % Recovery Organochlorine Pesticides E013 Organochlorine Pesticides (OC) Image: Color descent and the second and th	
LCS - % Recovery Organochlorine Pesticides E013 Organochlorine Pesticides (OC) Image: Chloridanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDD 4.4'-DDE % 96 70-130 Pass 4.4'-DDT 4.4'-DDT % 93 70-130 Pass 4.4'-DDT a-BHC % 93 70-130 Pass 4.4'-DDT b-BHC % 101 70-130 Pass 4.4'-DD b-BHC % 103 70-130 Pass 4.4'-DD b-BHC % 86 70-130 Pass 4.4'-DD b-BHC % 96 70-130 Pass 4.4'-DD b-BHC % 86 70-130 Pass 4.4'-DD b-BHC % 85 70-130 Pass 4.4'-DD b-BHC % 85 70-130 Pass 4.4'-DD b-BHC % 85 70-130 Pass 4.5'-D Dieldrin % 96 70-130	
Organochlorine Pesticides E013 Organochlorine Pesticides (OC) Image: Chloridanes - Total % 94 70-130 Pass 94 94 70-130 Pass 94 <	
Chlordanes - Total % 94 70-130 Pass 4.4'-DDD % 97 70-130 Pass 4.4'-DDE 4.4'-DDE % 96 70-130 Pass 4.4'-DDT 4.4'-DDT % 93 70-130 Pass 4.4'-DDT a-BHC % 101 70-130 Pass 4.4'-DDT b-BHC % 103 70-130 Pass 4.4'-DDT b-BHC % 86 70-130 Pass 4.4'-DDT b-BHC % 85 70-130 Pass 4.4'-DDT Dieldrin % 96 70-130 Pass 4.4'-DDT	
4.4'-DDD % 97 70-130 Pass 4.4'-DDE % 96 70-130 Pass 4.4'-DDT % 93 70-130 Pass a-BHC % 101 70-130 Pass Aldrin % 103 70-130 Pass b-BHC % 103 70-130 Pass d-BHC % 86 70-130 Pass Dieldrin % 96 70-130 Pass	
4.4'-DDE % 96 70-130 Pass 4.4'-DDT 4.4'-DDT % 93 70-130 Pass 93 a-BHC % 101 70-130 Pass 93 70-130 Pass 93 93 93 93 93 93 93 93 93 94	
4.4'-DDT % 93 70-130 Pass a-BHC % 101 70-130 Pass Aldrin % 103 70-130 Pass b-BHC % 86 70-130 Pass d-BHC % 85 70-130 Pass Dieldrin % 96 70-130 Pass	
a-BHC % 101 70-130 Pass Aldrin % 103 70-130 Pass b-BHC % 86 70-130 Pass d-BHC % 85 70-130 Pass Dieldrin % 96 70-130 Pass	
Aldrin % 103 70-130 Pass b-BHC % 86 70-130 Pass d-BHC % 85 70-130 Pass Dieldrin % 96 70-130 Pass	
b-BHC % 86 70-130 Pass d-BHC % 85 70-130 Pass Dieldrin % 96 70-130 Pass	
d-BHC % 85 70-130 Pass Dieldrin % 96 70-130 Pass	
Dieldrin % 96 70-130 Pass	
Endosultan I % 102 70-130 Pass	
Endosulfan II % 86 70-130 Pass	
Endosulfan sulphate % 70 70-130 Pass	
Endrin % 98 70-130 Pass	
Endrin aldehyde % 70 70-130 Pass	
Endrin ketone % 77 70-130 Pass	
g-BHC (Lindane) % 96 70-130 Pass	
Heptachlor % 98 70-130 Pass	
Heptachlor epoxide % 96 70-130 Pass	
Hexachlorobenzene % 97 70-130 Pass	
Methoxychlor % 74 70-130 Pass	
LCS - % Recovery	
Polychlorinated Biphenyls (PCB) E013 Polychlorinated Biphenyls (PCB)	
Aroclor-1260 % 80 70-130 Pass	
LCS - % Recovery	

Те	st		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Speciated Phenols E008 Specia	ated Phenols						
2.4-Dichlorophenol			%	97	30-130	Pass	
2.4-Dimethylphenol			%	94	30-130	Pass	
2.4.5-Trichlorophenol			%	95	30-130	Pass	
2.4.6-Trichlorophenol			%	93	30-130	Pass	
Phenol			%	86	30-130	Pass	
2-Methylphenol (o-Cresol)			%	87	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	82	30-130	Pass	
2-Chlorophenol			%	93	30-130	Pass	
2-Nitrophenol			%	83	30-130	Pass	
4-Chloro-3-methylphenol			%	85	30-130	Pass	
Pentachlorophenol			%	120	30-130	Pass	
LCS - % Recovery				I			
Cyanide (total)			%	96	70-130	Pass	
LCS - % Recovery			70			1 000	
Metals M8 E022 Acid Extractab	le metals in Soils & E	026 Merc	-				
Arsenic			%	97	70-130	Pass	
Cadmium			%	102	70-130	Pass	
Chromium			%	90	70-130	Pass	
Copper			%	111	70-130	Pass	
Lead			%	99	70-130	Pass	
Mercury			%	99	70-130	Pass	
Nickel			%	93	70-130	Pass	
Zinc			%	105	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				I			
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	S13-Oc16128	NCP	%	76	70-130	Pass	
Spike - % Recovery				T	 1	r	
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	S13-Oc16128	NCP	%	88	70-130	Pass	
Spike - % Recovery				1	 1	r	
Polycyclic Aromatic Hydrocarb	ons			Result 1			
Acenaphthene	S13-Oc15265	NCP	%	106	70-130	Pass	
Acenaphthylene	S13-Oc15265	NCP	%	110	70-130	Pass	
Anthracene	S13-Oc15265	NCP	%	111	70-130	Pass	
Benz(a)anthracene	S13-Oc15265	NCP	%	125	70-130	Pass	
					70-130	Pass	
Benzo(a)pyrene	S13-Oc15265	NCP	%	115			
Benzo(a)pyrene Benzo(b&j)fluoranthene	S13-Oc15265 S13-Oc15265	NCP NCP	%	115 121	70-130	Pass	
					70-130 70-130	Pass Pass	
Benzo(b&j)fluoranthene	S13-Oc15265	NCP	%	121			
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	S13-Oc15265 S13-Oc15265	NCP NCP	% %	121 103	70-130	Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	S13-Oc15265 S13-Oc15265 S13-Oc15265 S13-Oc15265	NCP NCP NCP	% % %	121 103 119	70-130 70-130	Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	S13-Oc15265 S13-Oc15265 S13-Oc15265 S13-Oc15265 S13-Oc15265	NCP NCP NCP NCP	% % % %	121 103 119 115	70-130 70-130 70-130	Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	S13-Oc15265 S13-Oc15265 S13-Oc15265 S13-Oc15265 S13-Oc15265 S13-Oc15265	NCP NCP NCP NCP NCP	% % % % %	121 103 119 115 101	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	S13-Oc15265	NCP NCP NCP NCP NCP NCP NCP	% % % % %	121 103 119 115 101 118 108	70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	S13-Oc15265	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	121 103 119 115 101 118 108 99	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene	S13-Oc15265	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	121 103 119 115 101 118 108 99 106	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	S13-Oc15265 S13-Oc15265	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % %	121 103 119 115 101 118 108 99 106 108	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	S13-Oc15265	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	121 103 119 115 101 118 108 99 106	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery	S13-Oc15265 S13-Oc15265	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % %	121 103 119 115 101 118 108 99 106 108 118	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	S13-Oc15265 S13-Oc15265	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % %	121 103 119 115 101 118 108 99 106 108	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDE	S13-Oc17681	NCP	%	91			70-130	Pass	
4.4'-DDT	S13-Oc17681	NCP	%	71			70-130	Pass	
a-BHC	S13-Oc17681	NCP	%	99			70-130	Pass	
Aldrin	S13-Oc17681	NCP	%	91			70-130	Pass	
b-BHC	S13-Oc17681	NCP	%	79			70-130	Pass	
d-BHC	S13-Oc17681	NCP	%	81			70-130	Pass	
Dieldrin	S13-Oc17681	NCP	%	92			70-130	Pass	
Endosulfan I	S13-Oc17681	NCP	%	95			70-130	Pass	
Endosulfan II	S13-Oc17681	NCP	%	91			70-130	Pass	
Endosulfan sulphate	S13-Oc17681	NCP	%	71			70-130	Pass	
Endrin	S13-Oc17681	NCP	%	90			70-130	Pass	
Endrin aldehyde	S13-Oc17681	NCP	%	71			70-130	Pass	
Endrin ketone	S13-Oc17681	NCP	%	92			70-130	Pass	
g-BHC (Lindane)	S13-Oc17681	NCP	%	90			70-130	Pass	
Heptachlor	S13-Oc17681	NCP	%	87			70-130	Pass	
Heptachlor epoxide	S13-Oc17681	NCP	%	91			70-130	Pass	
Hexachlorobenzene	S13-Oc17681	NCP	%	123			70-130	Pass	
Methoxychlor	S13-Oc17681	NCP	%	73			70-130	Pass	
Spike - % Recovery		<u> </u>			I				
Polychlorinated Biphenyls (PCB)				Result 1					
Aroclor-1260	S13-Oc16239	NCP	%	91			70-130	Pass	
Spike - % Recovery			,,,				1 10 100	1 400	
Speciated Phenols				Result 1					
2.4-Dichlorophenol	S13-Oc13461	NCP	%	96			30-130	Pass	
2.4-Dimethylphenol	S13-Oc13461	NCP	%	95			30-130	Pass	
2.4.5-Trichlorophenol	S13-Oc13461	NCP	%	95			30-130	Pass	
2.4.6-Trichlorophenol	S13-Oc13461	NCP	%	92			30-130	Pass	
Phenol	S13-Oc13461	NCP	%	83			30-130	Pass	
2-Methylphenol (o-Cresol)	S13-Oc13461	NCP	%	77			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	S13-Oc13461	NCP	%	84			30-130	Pass	
2-Chlorophenol	S13-Oc13461	NCP	%	91			30-130	Pass	
2-Nitrophenol	S13-Oc13461	NCP	%	88			30-130	Pass	
4-Chloro-3-methylphenol	S13-Oc13461	NCP	%	85			30-130	Pass	
Pentachlorophenol	S13-Oc13461	NCP	%	78			30-130	Pass	
Spike - % Recovery		1101	70	10			00 100	1 400	
				Result 1				[
Cyanide (total)	S13-Oc13558	NCP	%	79			70-130	Pass	
Spike - % Recovery			70	10			10100	1 400	
Metals M8				Result 1			1		
Arsenic	S13-Oc16128	NCP	%	116			70-130	Pass	
Cadmium	S13-Oc16128	NCP	%	112			70-130	Pass	
Chromium	S13-Oc16128	NCP	%	127			70-130	Pass	
Copper	S13-Oc16128	NCP	%	101			70-130	Pass	
Lead	S13-Oc16128	NCP	%	123			70-130	Pass	
	S13-Oc16520	NCP	%	99			70-130	Pass	
Mercury Nickel	S13-Oc16520	NCP	%	99			70-130	Pass	
							1		
Zinc	S13-Oc16128	NCP	%	100			70-130	Pass	Qualifying
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							1		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		-	
TRH C6-C9	S13-Oc16126	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S13-Oc16128	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S13-Oc16128	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S13-Oc16128	NCP	mg/kg	< 50	< 50	<1	30%	Pass	

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Oc16126	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S13-Oc16126	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S13-Oc16126	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S13-Oc16126	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S13-Oc16126	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total	S13-Oc16126	NCP		< 0.1	< 0.1	<1	30%	Pass	
Duplicate	313-0010120	NCF	mg/kg	< 0.5	< 0.5		30%	F d 55	
Total Recoverable Hydrocarbons	- 2013 NEPM Eract	ione		Result 1	Result 2	RPD	1		
Naphthalene	S13-Oc16126	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-Oc16126	NCP		< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Oc16126	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
		NCP	mg/kg	< 50	< 50	<1	30%		
TRH >C10-C16	S13-Oc16128		mg/kg		1			Pass	
TRH >C16-C34	S13-Oc16128	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S13-Oc16128	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				Desult 1	Desult 0		1	1	
Polycyclic Aromatic Hydrocarbon		NOD	mr - //	Result 1	Result 2	RPD	0.00/	D	
Acenaphthene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	-
Benzo(b&j)fluoranthene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S13-Oc13471	NCP	mg/kg	3.9	4.4	12	30%	Pass	
Phenanthrene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S13-Oc16239	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	_
Aldrin	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S13-Oc16239	NCP		< 0.05	< 0.05	<1	30%	Pass	
· · · · · · · · · · · · · · · · · · ·		1	mg/kg	1			1		
Hexachlorobenzene	S13-Oc16239	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S13-Oc16239	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Toxaphene	S13-Oc17681	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls (PCB)		-		Result 1	Result 2	RPD			
Aroclor-1016	S13-Oc16239	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S13-Oc16239	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S13-Oc16239	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S13-Oc16239	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S13-Oc16239	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S13-Oc16239	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Speciated Phenols				Result 1	Result 2	RPD			
2.4-Dichlorophenol	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dimethylphenol	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.6-Trichlorophenol	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenol	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S13-Oc13471	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2-Chlorophenol	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Nitrophenol	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S13-Oc13471	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pentachlorophenol	S13-Oc13471	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
			-	Result 1	Result 2	RPD			
Cyanide (total)	S13-Oc13558	NCP	mg/kg	2.2	2.4	9.0	30%	Pass	
Duplicate									
Metals M8			-	Result 1	Result 2	RPD			
Arsenic	S13-Oc16128	NCP	mg/kg	17	< 2	200	30%	Fail	Q15
Cadmium	S13-Oc16128	NCP	mg/kg	< 0.4	0.50	190	30%	Fail	Q15
Chromium	S13-Oc16128	NCP	mg/kg	26	23	14	30%	Pass	
Copper	S13-Oc16128	NCP	mg/kg	17	24	33	30%	Fail	Q15
Lead	S13-Oc16128	NCP	mg/kg	20	22	8.0	30%	Pass	
Mercury	S13-Oc16520	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S13-Oc16128	NCP	mg/kg	24	36	38	30%	Fail	Q15
Zinc	S13-Oc16128	NCP	mg/kg	30	37	20	30%	Pass	

Comments

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Ruth Callander	Client Services
Bob Symons	Senior Analyst-Inorganic (NSW)
James Norford	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Dr. Bob Symons

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Aargus P/L 446 Parramatta Road Petersham **NSW 2049**

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

398026-W

Michael Silk

Report **Client Reference Received Date**

MARRICKVILLE ES5611-2 Oct 30, 2013

Client Sample ID			GSS1
Sample Matrix			Water
Eurofins mgt Sample No.			S13-Oc23431
Date Sampled			Oct 29, 2013
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	_	Onic	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
BTEX	0.1	<u>_</u>	
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	85
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.02	mg/L	< 0.02
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
Volatile Organics		0	
1.1-Dichloroethane	0.001	mg/L	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001
1.1.2.2-Tetrachloroethane	0.005	mg/L	< 0.005
1.2-Dibromoethane	0.001	mg/L	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix			GSS1 Water
Eurofins mgt Sample No.			S13-Oc23431
Date Sampled			Oct 29, 2013
Test/Reference	LOR	Unit	
Volatile Organics	LOIN	Onic	
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001
Benzene	0.001	mg/L	< 0.001
Bromobenzene	0.001	mg/L	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001
Bromodichloromethane	0.001		< 0.001
		mg/L	
Bromoform Bromomethane	0.001	mg/L	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001
	0.001	mg/L	< 0.001
Carbon Tetrachloride Chlorobenzene	0.001	mg/L	< 0.001
	0.001	mg/L	< 0.001
Chloroethane	0.001	mg/L	< 0.001
Chloroform	0.005	mg/L	< 0.005
Chloromethane	0.001	mg/L	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001
Dibromomethane	0.005	mg/L	< 0.005
Dichlorodifluoromethane	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
Iodomethane	0.001	mg/L	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001
o-Xylene	0.001	mg/L	< 0.001
Styrene	0.001	mg/L	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001
Trichloroethene	0.001	mg/L	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
Fluorobenzene (surr.)	1	%	74
4-Bromofluorobenzene (surr.)	1	%	85
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			GSS1 Water S13-Oc23431 Oct 29, 2013
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons		_	
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	96
p-Terphenyl-d14 (surr.)	1	%	105
Heavy Metals			
Arsenic (filtered)	0.001	mg/L	< 0.001
Cadmium (filtered)	0.0001	mg/L	0.0002
Chromium (filtered)	0.001	mg/L	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001
Nickel (filtered)	0.001	mg/L	0.006
Zinc (filtered)	0.005	mg/L	0.015

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Oct 31, 2013	Holding Time 7 Day
- Method: E004 Petroleum Hydrocarbons (TPH) BTEX	Sydney	Oct 30, 2013	14 Day
- Method: E029/E016 BTEX Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 31, 2013	7 Day
- Method: LM-LTM-ORG2010 Polycyclic Aromatic Hydrocarbons	Sydney	Oct 31, 2013	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH) Metals M8 filtered	Sydney	Oct 30, 2013	28 Day
- Method: E020/E030 Filtered Metals in Water & E026 Mercury Volatile Organics	Sydney	Oct 31, 2013	7 Dav
- Method: E016 Volatile Organic Compounds (VOC)	- ,		,

	mgt
ins	
Irof	
el	

ABN – 50 005 085 521 e. mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au Site # 1261 35 kingston Town Close 35 kingston Town Close 36 kingston Long to the Close 36 kingston
 Sydney
 Brisbane

 Unit FB, Buiding F
 1/21 Smalwood Place

 Unit FB, Buiding F
 1/21 Smalwood Place

 In Mars Road
 Murarife QLD 4172

 Lanc Cove Wers NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Slie # 1227

Eurofins | mgt Client Manager: Ruth Callander Oct 30, 2013 2:00 PM 5 Day Michael Silk Nov 6, 2013 Priority: Contact Name: Received: Due: 398026 1300 137 038 1300 136 038 Order No.: Report #: Phone: Fax: MARRICKVILLE ES5611-2 Aargus P/L 446 Parramatta Road Petersham NSW 2049 **Company Name:** Client Job No.: Address:

			×				×
Volatile Organics							
Eurofins mgt Suite 7 (filtered metals)			×				×
						LAB ID	S13-Oc23431
		271				Matrix	Water
Sample Detail	onducted	Site # 1254 & 14	# 18217	te # 20794		Sampling Time	
	Laboratory where analysis is conducted	Melbourne Laboratory - NATA Site # 1254 & 14271	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	itory	Sample Date	Oct 29, 2013
	Laboratory whe	Melbourne Labo	Sydney Laborat	Brisbane Labor	External Laboratory	Sample ID	GSS1

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/l: milligrams per litre
ug/I: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100ml · Most Probable Number of organisms per 100 millilitres	

TERMS

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.005	0.005	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.005	0.005	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Iodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Method Blank		I I		r	
Polycyclic Aromatic Hydrocarbons					ļ
Acenaphthene	mg/L	< 0.001	0.001	Pass	ļ
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		1 Г	T T	1	
Heavy Metals	I				
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0001	0.0001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		1 1		1	
Total Recoverable Hydrocarbons - 1999 NEPM Fra					
TRH C6-C9	%	76	70-130	Pass	
TRH C10-C14	%	80	70-130	Pass	
LCS - % Recovery				1	
BTEX					
Benzene	%	99	70-130	Pass	
Toluene	%	98	70-130	Pass	
Ethylbenzene	%	107	70-130	Pass	L
m&p-Xylenes	%	106	70-130	Pass	
o-Xylene	%	104	70-130	Pass	L
Xylenes - Total	%	93	70-130	Pass	

Test	Units	Result 1	Acce	ptance Pass nits Limit	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	79	70-	-130 Pass	
TRH C6-C10	%	81	70-	-130 Pass	
TRH >C10-C16	%	86	70-	-130 Pass	
LCS - % Recovery		1			
Volatile Organics					_
1.1-Dichloroethane	%	103	75-	125 Pass	
1.1-Dichloroethene	%	104	70-	-130 Pass	
1.1.1-Trichloroethane	%	111		-130 Pass	
1.1.1.2-Tetrachloroethane	%	104		-130 Pass	
1.1.2-Trichloroethane	%	90		-130 Pass	
1.1.2.2-Tetrachloroethane	%	99		-130 Pass	
1.2-Dibromoethane	%	93		-130 Pass	
1.2-Dichlorobenzene	%	99		-130 Pass	
1.2-Dichloroethane	%	92		-130 Pass	
1.2-Dichloropropane	%	90		-130 Pass	1
1.2.3-Trichloropropane	%	91		-130 Pass	
1.2.4-Trimethylbenzene	%	97		-130 Pass	
1.3-Dichlorobenzene	%	99		-130 Pass	
1.3-Dichloropropane	%	93		-130 Pass	
1.3.5-Trimethylbenzene	%	100		-130 Pass	
1.4-Dichlorobenzene	%	99		-130 Pass	
2-Butanone (MEK)	%	80	70-	-130 Pass	
4-Chlorotoluene	%	101		-130 Pass	
4-Methyl-2-pentanone (MIBK)	%	78		-130 Pass	
Bromobenzene	%	97		-130 Pass	
Bromochloromethane	%	105		-130 Pass	
Bromodichloromethane	%	94	70-	-130 Pass	
Bromoform	%	116		-130 Pass	
Bromomethane	%	118		-130 Pass	
Carbon disulfide	%	109	70-	-130 Pass	
Carbon Tetrachloride	%	119	70-	-130 Pass	
Chlorobenzene	%	106	70-	-130 Pass	
Chloroethane	%	121	70-	130 Pass	
Chloroform	%	108	70-	130 Pass	
Chloromethane	%	99	70-	130 Pass	
cis-1.2-Dichloroethene	%	106	70-	-130 Pass	
cis-1.3-Dichloropropene	%	92	70-	130 Pass	
Dibromochloromethane	%	94	70-	130 Pass	
Dibromomethane	%	92	70-	-130 Pass	
Dichlorodifluoromethane	%	77	70-	-130 Pass	
Iodomethane	%	90	75-	125 Pass	
Isopropyl benzene (Cumene)	%	104	70-	130 Pass	
Methylene Chloride	%	108	70-	-130 Pass	
Styrene	%	102	70-	-130 Pass	
Tetrachloroethene	%	97	70-	-130 Pass	
trans-1.2-Dichloroethene	%	108	70-	-130 Pass	
trans-1.3-Dichloropropene	%	92	70-	-130 Pass	
Trichloroethene	%	97	70-	-130 Pass	
Trichlorofluoromethane	%	110	70-	-130 Pass	
Vinyl chloride	%	99	70-	-130 Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	109	70-	-130 Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthylene	aphthylene			106	70-130	Pass	
Anthracene	hracene				70-130	Pass	
Benz(a)anthracene	Benz(a)anthracene				70-130	Pass	
Benzo(a)pyrene			%	78	70-130	Pass	
Benzo(b&j)fluoranthene			%	98	70-130	Pass	
Benzo(g.h.i)perylene			%	88	70-130	Pass	
Benzo(k)fluoranthene			%	115	70-130	Pass	
Chrysene			%	113	70-130	Pass	
Dibenz(a.h)anthracene			%	93	70-130	Pass	
Fluoranthene			%	116	70-130	Pass	
Fluorene			%	109	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	81	70-130	Pass	
Naphthalene			%	110	70-130	Pass	
Phenanthrene			%	115	70-130	Pass	
Pyrene			%	121	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic (filtered)			%	104	70-130	Pass	
Cadmium (filtered)			%	106	70-130	Pass	
Chromium (filtered)			%	101	70-130	Pass	
Copper (filtered)			%	102	70-130	Pass	
Lead (filtered)			%	105	70-130	Pass	
Mercury (filtered)			%	91	70-130	Pass	
Nickel (filtered)			%	103	70-130	Pass	
Zinc (filtered)			%	110	70-130	Pass	
				-			
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Test Spike - % Recovery	Lab Sample ID		Units	Result 1	Acceptance Limits		Qualifying Code
	•	Source	Units	Result 1 Result 1	Acceptance Limits		Qualifying Code
Spike - % Recovery	•	Source	Units %		Acceptance Limits 70-130		Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	Source		Result 1	Limits	Limits	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9	s - 1999 NEPM Fract S13-Oc21181	tions NCP	%	Result 1 91	70-130	Limits Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14	s - 1999 NEPM Fract S13-Oc21181	tions NCP	%	Result 1 91	70-130	Limits Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery	s - 1999 NEPM Fract S13-Oc21181	tions NCP	%	Result 1 91 81	70-130	Limits Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165	Source tions NCP NCP	%	Result 1 91 81 Result 1	Limits 70-130 70-130	Limits Pass Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc21165	Source tions NCP NCP	%	Result 1 91 81 Result 1 103	Limits 70-130 70-130 70-130 70-130	Limits Pass Pass Pass Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829	Source tions NCP NCP NCP NCP	% % %	Result 1 91 81 Result 1 103 111	Limits 70-130 70-130 70-130 70-130 70-130	Limits Pass Pass Pass Pass Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829	Source tions NCP NCP NCP NCP NCP	% % % %	Result 1 91 81 Result 1 103 111 123	Limits 70-130 70-130 70-130 70-130 70-130 70-130	Limits Pass Pass Pass Pass Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829	Source ions NCP NCP NCP NCP NCP NCP NCP	% % % % %	Result 1 91 81 Result 1 103 111 123 110	Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829	Source ions NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	Result 1 91 81 Result 1 103 111 123 110 115	Limits 70-130 70-	Limits Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181	Source tions NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	Result 1 91 81 Result 1 103 111 123 110 115	Limits 70-130 70-	Limits Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181	Source tions NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	Result 1 91 81 Result 1 103 111 123 110 115 94	Limits 70-130 70-	Limits Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc23829 S13-Oc2382	Source ions NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1	Limits 70-130 70-	Limits Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylenes Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21185 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829	Source Source NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72	Limits 70-130 70-10 70-10 70-10 70-10 70-10 70-10 70	Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21185 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 s - 2013 NEPM Fract S13-Oc23829 S13-Oc23829 S13-Oc21181	Source Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % % %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82	Limits	Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21185 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 s - 2013 NEPM Fract S13-Oc23829 S13-Oc23829 S13-Oc21181	Source Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % % %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82	Limits	Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21185 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 s - 2013 NEPM Fract S13-Oc23829 S13-Oc23829 S13-Oc21181	Source Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % % %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82 88	Limits	Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Volatile Organics	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 S13-Oc21185	Source tions NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82 88 Result 1	Limits	Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Volatile Organics 1.1-Dichloroethane	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21185 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 S13-Oc21181 S13-Oc21185 S13-Oc21165	Source Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82 88 Result 1 99	Limits	Limits Pass Pass Pass Pass Pass Pass Pass P	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylenes o-Xylenes O-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Volatile Organics 1.1-Dichloroethane 1.1-Dichloroethene	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21185 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 S13-Oc21185 S13-Oc21185 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829	Source Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82 88 Result 1 99 106	Limits	Limits Pass Pass Pass Pass Pass Pass Pass P	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Volatile Organics 1.1-Dichloroethane 1.1-Dichloroethane 1.1.1-Trichloroethane	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21185 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 S13-Oc21181 S13-Oc21185 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829	Source Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82 88 Result 1 99 106 111	Limits	Limits Pass Pass Pass Pass Pass Pass Pass P	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Volatile Organics 1.1-Dichloroethane 1.1.1.Trichloroethane 1.1.1.2-Tetrachloroethane	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21185 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 S13-Oc21181 S13-Oc21185 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829	Source Source Source Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82 88 Result 1 99 106 111 109 120	Limits	Limits Pass Pass Pass Pass Pass Pass Pass P	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Volatile Organics 1.1-Dichloroethane 1.1.1-Trichloroethane 1.1.2-Tetrachloroethane 1.1.2-Tetrachloroethane 1.1.2.2-Tetrachloroethane	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21165 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 S13-Oc21185 S13-Oc21185 S13-Oc23829	Source Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82 88 Result 1 99 106 111 109 120 111	Limits	Limits	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbon TRH C6-C9 TRH C10-C14 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbon Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Volatile Organics 1.1-Dichloroethane 1.1.1-Trichloroethane 1.1.2-Tetrachloroethane 1.1.2-Trichloroethane 1.1.2-Trichloroethane	s - 1999 NEPM Fract S13-Oc21181 S13-Oc21185 S13-Oc21165 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc21181 S13-Oc21181 S13-Oc21185 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829 S13-Oc23829	Source Source Source Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	Result 1 91 81 Result 1 103 111 123 110 115 94 Result 1 72 82 88 Result 1 99 106 111 109 120	Limits	Limits	Qualifying Code

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
1.2-Dichloropropane	S13-Oc23829	NCP	%	94		70-130	Pass	
1.2.3-Trichloropropane	S13-Oc23829	NCP	%	104		70-130	Pass	
1.2.4-Trimethylbenzene	S13-Oc23829	NCP	%	102		70-130	Pass	
1.3-Dichlorobenzene	S13-Oc23829	NCP	%	99		70-130	Pass	
1.3-Dichloropropane	S13-Oc23829	NCP	%	112		70-130	Pass	
1.3.5-Trimethylbenzene	S13-Oc23829	NCP	%	102		70-130	Pass	
1.4-Dichlorobenzene	S13-Oc23829	NCP	%	106		70-130	Pass	
2-Butanone (MEK)	S13-Oc23829	NCP	%	89		70-130	Pass	
4-Chlorotoluene	S13-Oc23829	NCP	%	100		70-130	Pass	
4-Methyl-2-pentanone (MIBK)	S13-Oc23829	NCP	%	123		70-130	Pass	
Bromobenzene	S13-Oc23829	NCP	%	106		70-130	Pass	
Bromoform	S13-Oc23829	NCP	%	115		70-130	Pass	
Bromomethane	S13-Oc23829	NCP	%	109		70-130	Pass	
Carbon disulfide	S13-Oc23829	NCP	%	108		70-130	Pass	
Carbon Tetrachloride	S13-Oc23829	NCP	%	119		70-130	Pass	
Chlorobenzene	S13-Oc23829	NCP	%	110		70-130	Pass	
Chloroethane	S13-Oc23829	NCP	%	129		70-130	Pass	
cis-1.2-Dichloroethene	S13-Oc23829	NCP	%	101		70-130	Pass	
cis-1.3-Dichloropropene	S13-Oc23829	NCP	%	118		70-130	Pass	
Dibromochloromethane	S13-Oc23829	NCP	%	112		70-130	Pass	
Dibromomethane	S13-Oc23829	NCP	%	98		70-130	Pass	
Dichlorodifluoromethane	S13-Oc23829	NCP	%	119		70-130	Pass	
lodomethane	S13-Oc23829	NCP	%	96		75-125	Pass	
Isopropyl benzene (Cumene)	S13-Oc23829	NCP	%	112		70-130	Pass	
Methylene Chloride	S13-Oc23829	NCP	%	101		70-130	Pass	
Styrene	S13-Oc23829	NCP	%	111		70-130	Pass	
Tetrachloroethene	S13-Oc23829	NCP	%	115		70-130	Pass	
trans-1.2-Dichloroethene	S13-Oc23829	NCP	%	106		70-130	Pass	
trans-1.3-Dichloropropene	S13-Oc23829	NCP	%	118		70-130	Pass	
Trichloroethene	S13-Oc23829	NCP	%	103		70-130	Pass	
Trichlorofluoromethane	S13-Oc23829	NCP	%	113		70-130	Pass	
Vinyl chloride	S13-Oc23829	NCP	%	123		70-130	Pass	
Spike - % Recovery	010 0020020		,,,			10.00	1 0.00	
Polycyclic Aromatic Hydrocarbo	ns			Result 1				
Acenaphthene	S13-Oc24820	NCP	%	104		70-130	Pass	
Acenaphthylene	S13-Oc24820	NCP	%	103		70-130	Pass	
Anthracene	S13-Oc24820	NCP	%	95		70-130	Pass	
Benz(a)anthracene	S13-Oc24820	NCP	%	109		70-130	Pass	
Benzo(a)pyrene	S13-Oc24820	NCP	%	96		70-130	Pass	
Benzo(b&j)fluoranthene	S13-Oc24820	NCP	%	116		70-130	Pass	
Benzo(g.h.i)perylene	S13-Oc24820	NCP	%	94		70-130	Pass	
Benzo(k)fluoranthene	S13-Oc24820	NCP	%	105		70-130	Pass	
Chrysene	S13-Oc24820	NCP	%	103		70-130	Pass	
Dibenz(a.h)anthracene	S13-Oc24820	NCP	%	85		70-130	Pass	
Fluoranthene	S13-Oc24820	NCP	%	114		70-130	Pass	
Fluorene	S13-Oc24820	NCP	%	107		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-Oc24820	NCP	%	95		70-130	Pass	
Naphthalene	S13-Oc24820	NCP	%	104		70-130	Pass	
Phenanthrene	S13-Oc24820	NCP	%	104		70-130	Pass	
	S13-Oc24820	NCP	%	113		70-130	Pass	
Pyrene	013-0024020	NUP	70	113		10-130	F d 55	
Spike - % Recovery				Popult 1				
Heavy Metals	642 0-02445	NOD	0/	Result 1		70.400	Dess	
Arsenic (filtered)	S13-Oc23415 S13-Oc23415	NCP NCP	%	110 110		70-130	Pass	
Cadmium (filtered)			~/~	1 110	i I I	70-130	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Copper (filtered)	S13-Oc23415	NCP	%	94			70-130	Pass	
Lead (filtered)	S13-Oc23415	NCP	%	93			70-130	Pass	
Mercury (filtered)	S13-Oc23415	NCP	%	98			70-130	Pass	
Nickel (filtered)	S13-Oc23415	NCP	%	95			70-130	Pass	
Zinc (filtered)	S13-Oc23415	NCP	%	99			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1	1				
Total Recoverable Hydrocarbon		1 1		Result 1	Result 2	RPD			
TRH C6-C9	S13-Oc21164	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S13-Oc24112	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S13-Oc24112	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S13-Oc24112	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
втех				Result 1	Result 2	RPD			
Benzene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S13-Oc23828	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S13-Oc21164	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	S13-Oc23828	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10	S13-Oc21164	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Oc21164	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S13-Oc24112	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C16-C34	S13-Oc24112	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S13-Oc24112	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	010-0024112		ilig/L		× 0.1	-1	0070	1 433	
Volatile Organics				Result 1	Result 2	RPD	1		
1.1-Dichloroethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1-Dichloroethene		NCP		< 0.001	< 0.001	<1	30%		
	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1-Trichloroethane	S13-Oc23828		mg/L	1				Pass	
1.1.1.2-Tetrachloroethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2-Trichloroethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S13-Oc23828	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
1.2-Dibromoethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichlorobenzene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloroethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloropropane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.3-Trichloropropane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.4-Trimethylbenzene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichlorobenzene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichloropropane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3.5-Trimethylbenzene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.4-Dichlorobenzene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Butanone (MEK)	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Chlorotoluene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromobenzene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromochloromethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromodichloromethane	S13-Oc23828	NCP	mg/L	0.022	0.021	4.0	30%	Pass	
Bromoform	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromomethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Carbon disulfide	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon Tetrachloride	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chlorobenzene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroform	S13-Oc23828	NCP	mg/L	0.12	0.12	4.0	30%	Pass	
Chloromethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
cis-1.2-Dichloroethene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
cis-1.3-Dichloropropene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromochloromethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromomethane	S13-Oc23828	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Dichlorodifluoromethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iodomethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Isopropyl benzene (Cumene)	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Methylene Chloride	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Styrene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Tetrachloroethene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.3-Dichloropropene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichloroethene	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichlorofluoromethane	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Vinyl chloride	S13-Oc23828	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate	010 0020020	1101	ing/E	0.001	0.001		0070	1 400	
Polycyclic Aromatic Hydrocarbo	ns			Result 1	Result 2	RPD			
Acenaphthene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S13-Oc24819	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate	1 010 0024019		inig/⊏	. 0.001			0070	1 4 3 3	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S13-Oc23414	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S13-Oc23414	NCP	mg/L	0.00010	0.00030	76	30%	Fail	Q15
Chromium (filtered)	S13-Oc23414	NCP	mg/L	< 0.001	< 0.000	<1	30%	Pass	Q 10
Copper (filtered)	S13-Oc23414	NCP	mg/L	0.0050	0.0060	14	30%	Pass	
Lead (filtered)	S13-Oc23414	NCP	mg/L	< 0.001	< 0.000	<1	30%	Pass	
Mercury (filtered)	S13-Oc23414	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
	010-0020414		ing/∟	1			1	1 1	
Nickel (filtered)	S13-Oc23414	NCP	mg/L	0.0060	0.0060	6.0	30%	Pass	

Comments

Sample	Integrity
0	-1-1-++ (**

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Ruth Callander	Client Services
James Norford	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company. resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Clay Content Assessment

 Sample Drop Off:
 16 Chilvers Road Thornleigh NSW 2120
 Tel:
 13

 Mailing Address:
 PO Box 357 Pennant Hills NSW 1715
 Em:
 in

 Tel:
 1300 30 40 80

 Fax:
 1300 64 46 89

 Em:
 info@sesl.com.au

 Web:
 www.sesl.com.au

 Client Name:
 Groundswell Laboratories
 Project Name:
 Marrickville

 Client Contact:
 Paul Woodward
 Location:
 SESL Quote N°:

 Client Job N°:
 SESL Quote N°:
 Date Received:
 28-10-2013

 Address:
 116 Moray Street South Melbourne VIC 3205
 Test Type:
 PSA_SC

 Batch N°
 Sample N°
 Description
 Clav C

Batch N°	Sample N°	Sample Name	Description	Clay Content (%)
28185	1	BH9 0.4-0.6	Soil	5.2
28185	2	BH9 0.8-1.0	Soil	27.8
28185	3	BH13 0.2-0.4	Soil	36.2
28185	4	BH13 0.8-1.0	Soil	34.2
28185	5	BH16 0.3-0.5	Soil	33.3
28185	6	BH16 0.8-1.0	Soil	48.3

SUMMARY AND RECOMMENDATIONS

Consultant: Alisa Bryce

10

Tests are performed under a quality system certified as complying with ISO 9001: 2008. Results and conclusions assume that sampling is representative. This document shall not be reproduced except in full.

Authorised Signatory: Ryan Jacka

Date of Report

Report Status: O Draft O Final

Method Reference: SESL In house, PM0001

Groundswell Laboratories

" A New Force in Analytical Testing"

Not Applicable Soil & Water 21/10/2013 Marrickville ES5611-2 GS13482 49 NATA Accredited Laboratory 17067 Date Samples Received : Groundswell Quote # : **CERTIFICATE OF ANALYSIS** Groundswell Batch # : Sample Matrix : Sample # Submitted : Date CofA Issued : Project Name : Project # : NATA 446 Parramatta Road, Petrsham, NSW, 2049 mar.kelly@aargus.net michael@aargus.net 1300 137 038 1300 136 038 Michael Silk Mark kelly Paul Woodward Aargus Project Sample Manager : Project Manager : Client Phone # : **Client Address :** Client Name : Client Fax # : E-mail : E-mail :

WORLD RECOGNISED paul@groundswelllabs.com.au Managing Director

Accredited for compliance with ISO/IEC 17025

Reference AF56.Rev4 Date Issued : 3/11/2010

Chris De Luca

Senior Chemist

chris@groundswelllabs.com.au

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 1 of 36

					Anal	ytical	Analytical Results	S					
Client Sample ID				BH1 0-0.5	BH1 0.5-1.0	BH1 1.0-1.5	BH2 0-0.5	BH2 0.5-1.0	BH3 0-0.5	BH3 0.5-1.0	BH3 1.0-1.5	BH4 0.3-0.5	BH4 0.9-1.0
Laboratory Sample Number				GS13482-1	GS13482-2	GS13482-3	GS13482-4	GS13482-5	GS13482-6	GS13482-7	GS13482-8	GS13482-9	GS13482-10
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
Analytes	Literature	Units	LOR										
	Reference												
Moisture	NEPC 6.1	%	0.1				-		1				
Hd	NEPC 6.2	oH Units	0.1										
Cation Exchange Capacity													
Electrical Conductivity	NEPC 6.3	dS/m	0.01		1	1	1	1		1	1	1	
Soil Chemical Method Used			-				-		1				
Exchangeable Calcium	Soil Chemical	mg/Kg	1		-		-		-	-			
Exchangeable Magnesium	Methods -	mg/Kg	1		-		1	-	-	-	-		-
Exchangeable Potassium	Australasia (mg/Kg	1		1		1	-	-	1	-		-
Exchangeable Sodium	Rayment & Lyons)	mg/Kg	1		-		-	-	-	-	-	-	-
CEC		MEQ%	0.1		-		-		-	-			-
Metals													
Arsenic	EPA 200.2	mg/kg	1	4	4	9	27	11	1	5	4	5	ß
Cadmium	EPA 200.2	mg/kg	0.1	0.2	0.2	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	0.8	0.3
Chromium	EPA 200.2	mg/kg	1	12	13	14	17	14	4	14	14	6	11
Copper	EPA 200.2	mg/kg	1	6	131	10	26	ß	1	6	8	35	22
Lead	EPA 200.2	mg/kg	1	27	21	13	2437	345	14	18	17	128	82
Mercury	EPA 200.2	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1
Nickel	EPA 200.2	mg/kg	1	2	8	1	4	2	1	1	1	c	4
Zinc	EPA 200.2	mg/kg	1	188	56	22	804	66	ß	33	16	378	172
Hexavalent Chromium	USEPA 3060A	mg/kg	1										-
Trivalent Chromium	In House	mg/kg	1		1	1	-				-		1
WAD Cyanide	NEPC 9.1	mg/kg	1		1		-	-	-		-	-	-
					Referenc	Reference AF56.Rev4 Date Issued : 3/11/2010	ssued : 3/11/2010						

Comments :

1- All metals samples prepared as per NEPC Measure 1999 Schedule B (3), involving air-drying, grinding and screening to -2mm.

2 - Samples digested by EPA Method 200.2 prior to the analaysis of metals

3- pH determined & reported on a 1:5 soil:0.01M calcium chloride extraction

Foil chemical method 15B1 'Exchangeable bases and cation exchange capacity - 1M amonium chloride at pH 7.0, <u>no pre-treatment</u> for soluble salts'
 Soli chemical method 15B2 'Exchangeable bases and cation exchange capacity - 1M amonium chloride at pH 7.0, <u>pre-treatment</u> for soluble salts'

6- Hexavalent chromium & WAD cyanide results reported on a dry weight basis.

					Anal	ytical	Analytical Results	S					
				-	-		-					-	
Client Sample ID				BH5 0.2-0.4	BH5 0.8-1.0	BH6 0.2-0.4	BH6 0.9-1.0	BH7 0.4-0.6	BH7 1.1-1.3	BH8 0.1-0.3	BH9 0.4-0.6	BH9 0.8-1.0	BH10 0.4-0.5
Laboratory Sample Number				GS13482-11	GS13482-12	GS13482-13	GS13482-14	GS13482-15	GS13482-16	GS13482-17	GS13482-18	GS13482-19	GS13482-20
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
Analytes	Literature	Units	LOR										
	Reference												
Moisture	NEPC 6.1	%	0.1	1	-	-	-	19.0	-	-	13.0	18.4	
рН	NEPC 6.2	oH Units	0.1	-					-		6.3	6.7	
Cation Exchange Capacity													
Electrical Conductivity	NEPC 6.3	dS/m	0.01	1	-	-	-		1	-	0.10	0.06	
Soil Chemical Method Used		1	1	1	-	1	-		-		1581	1581	
Exchangeable Calcium	Soil Chemical	mg/Kg	1	1	1	1	1	-	1	-	325	262	
Exchangeable Magnesium	Methods -	mg/Kg	1	I	-	-			-	-	144	147	
Exchangeable Potassium	Australasia (mg/Kg	1	I	-	-		-	-		198	113	
Exchangeable Sodium	Rayment & Lyons)	mg/Kg	1								63	84	
CEC		MEQ%	0.1								3.6	3.2	
Metals													
Arsenic	EPA 200.2	mg/kg	1	11	4	9	4	10	2	4	10	7	10
Cadmium	EPA 200.2	mg/kg	0.1	3.4	<0.1	0.8	<0.1	0.5	0.2	1.1	0.5	<0.1	0.3
Chromium	EPA 200.2	mg/kg	1	28	13	16	13	14	15	43	14	12	6
Copper	EPA 200.2	mg/kg	1	275	10	134	14	68	19	113	34	7	19
Lead	EPA 200.2	mg/kg	1	1176	24	947	30	518	81	527	156	23	73
Mercury	EPA 200.2	mg/kg	0.1	0.9	<0.1	0.5	<0.1	0.3	<0.1	0.2	<0.1	<0.1	<0.1
Nickel	EPA 200.2	mg/kg	1	19	2	11	2	10	2	8	16	2	∞
Zinc	EPA 200.2	mg/kg	1	1200	61	994	92	760	272	760	1310	83	355
Hexavalent Chromium	USEPA 3060A	mg/kg	1		-		1	-	-		<1	<1	-
Trivalent Chromium	In House	mg/kg	1								14	12	
WAD Cyanide	NEPC 9.1	mg/kg	1					<1					
					Reference	Reference AF56.Rev4 Date Issued : 3/11/2010	ssued : 3/11/2010						

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : paul@groundswelllabs.com.au Page 3 of 36

					Anal	ytical	Analytical Results	S					
				0 1 0 0 0 1 0	10001	002020110	1000010	00100110	1 0 C 0 C 1 1 0	0100010	CO CO 1110	01110000	01010
Laboratory Sample Number				GS13482-21	GS13482-22	GS13482-23	GS13482-24	GS13482-25	GS13482-26	GS13482-27	GS13482-28	БП14 0.0-0.8 GS13482-29	GS13482-30
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
Analytes	Literature	Units	LOR										
	Reference												
Moisture	NEPC 6.1	%	0.1	1	23.0	1	1	-	20.0	17.5	-	-	31.0
рН	NEPC 6.2	oH Units	0.1						6.7	4.3			
Cation Exchange Capacity													
Electrical Conductivity	NEPC 6.3	dS/m	0.01	1	-	1	1	-	0.10	0.07	-		
Soil Chemical Method Used				1			-						
Exchangeable Calcium	Soil Chemical	mg/Kg	-1	1	1	1	1	-	313	189	-	1	1
Exchangeable Magnesium	Methods -	mg/Kg	1	I		-			252	387			I
Exchangeable Potassium	Australasia (mg/Kg	1			-		-	325	342	-	-	I
Exchangeable Sodium	Rayment & Lyons)	mg/Kg	1						81	92			
CEC		MEQ%	0.1						4.8	5.4			
Metals													
Arsenic	EPA 200.2	mg/kg	1	4	6	12	21	12	5	8	5	4	16
Cadmium	EPA 200.2	mg/kg	0.1	<0.1	1.0	0.2	1.3	0.3	0.2	<0.1	0.8	<0.1	<0.1
Chromium	EPA 200.2	mg/kg	1	13	18	17	33	18	13	17	15	14	23
Copper	EPA 200.2	mg/kg	1	80	241	16	260	18	23	8	171	00	80
Lead	EPA 200.2	mg/kg	1	27	376	39	758	63	131	28	229	24	37
Mercury	EPA 200.2	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	<0.1	0.1	<0.1	0.2	<0.1	<0.1
Nickel	EPA 200.2	mg/kg	1	2	6	4	26	4	4	2	9	1	9
Zinc	EPA 200.2	mg/kg	1	72	1770	174	1490	318	150	32	439	31	17
Hexavalent Chromium	USEPA 3060A	mg/kg	1						<1	<1			
Trivalent Chromium	In House	mg/kg	1						13	17			
WAD Cyanide	NEPC 9.1	mg/kg	1		<1								<1
					Reference	Reference AF56.Rev4 Date issued : 3/11/2010	ssued : 3/11/2010						

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : paul@groundswelllabs.com.au Page 4 of 36

					Anal	ytical	Analytical Results	S					
Client Sample ID				BH15 0.9-1.0	BH160.3-0.5	BH16 0.8-1.0	BH17 0.3-0.5	BH17 0.7-0.8	BH18 0.4-0.5	BH18 0.7-0.8	BH19 0.2-0.4	BH20 0.2-0.4	BH20 1.0-1.1
Laboratory Sample Number				GS13482-31	GS13482-32	GS13482-33	GS13482-34	GS13482-35	GS13482-36	GS13482-37	GS13482-38	GS13482-39	GS13482-40
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
Analytes	Literature	Units	LOR										
	Reference												
Moisture	NEPC 6.1	%	0.1	1	28.0	17.4	19.0	1	1	1	21.0	1	-
Н	NEPC 6.2	oH Units	0.1		8.2	7.9							
Cation Exchange Capacity													
Electrical Conductivity	NEPC 6.3	dS/m	0.01	1	0.23	0.18	-	1	-	1	1	-	-
Soil Chemical Method Used		1	1	1			-	1	1	-	1	1	-
Exchangeable Calcium	Soil Chemical	mg/Kg	1	1	801	269	-	1	1	1	1	1	-
Exchangeable Magnesium	Methods -	mg/Kg	1		132	349	-			-	-	-	-
Exchangeable Potassium	Australasia (mg/Kg	1		336	145			-	1	-	-	-
Exchangeable Sodium	Rayment & Lyons)	mg/Kg	1		197	283							
CEC		MEQ%	0.1		6.8	5.8							
Metals													
Arsenic	EPA 200.2	mg/kg	1	10	7	7	4	ю	9	11	15	11	6
Cadmium	EPA 200.2	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.6	0.6	4.1	1.0	0.4
Chromium	EPA 200.2	mg/kg	1	16	21	21	15	15	17	20	28	18	20
Copper	EPA 200.2	mg/kg	1	2	15	2	6	9	44	69	553	53	66
Lead	EPA 200.2	mg/kg	1	10	67	20	41	28	574	584	1900	1700	468
Mercury	EPA 200.2	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.2	0.1	0.2	0.5
Nickel	EPA 200.2	mg/kg	1	1	9	1	2	2	ß	8	28	5	ß
Zinc	EPA 200.2	mg/kg	1	9	60	11	26	16	378	548	1912	675	369
Hexavalent Chromium	USEPA 3060A	mg/kg	1	-	<1	<1	1	1		-	1	-	
Trivalent Chromium	In House	mg/kg	1		21	21				-	1	1	1
WAD Cyanide	NEPC 9.1	mg/kg	1				<1				<1		
					Reference	Reference AF56.Rev4 Date issued : 3/11/2010	ssued : 3/11/2010	•		*	*		

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : paul@groundswelllabs.com.au Page 5 of 36

					Anal	Analytical Results	Result	S				
Client Sample ID				BH20 1.1-1.1	BH210.3-0.5	BH22 0.2-0.3	D1	D2	D3	D4	R1	R2
Laboratory Sample Number				GS13482-41	GS13482-42	GS13482-43	GS13482-44	GS13482-45	GS13482-46	GS13482-47	GS13482-46	GS13482-47
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
Analytes	Literature	Units	LOR									
	Reference											
Moisture	NEPC 6.1	%	0.1		1		12.0		30.0	24.0	-	-
рН	NEPC 6.2	oH Units	0.1		-			-		-		
Cation Exchange Capacity												
Electrical Conductivity	NEPC 6.3	dS/m	0.01		1							-
Soil Chemical Method Used					1						-	-
Exchangeable Calcium	Soil Chemical	mg/Kg	1		1						-	1
Exchangeable Magnesium	Methods -	mg/Kg	1		-		1	1		-		
Exchangeable Potassium	Australasia (mg/Kg	1		I	1	-	1		1	-	-
Exchangeable Sodium	Rayment & Lyons)	mg/Kg	1									
CEC		MEQ%	0.1									
Metals												
Arsenic	EPA 200.2	mg/kg	1	5	16	12	15	11	15	9	<5	<5
Cadmium	EPA 200.2	mg/kg	0.1	<0.1	1.7	0.3	0.5	1.2	<0.1	0.6	<0.1	<0.1
Chromium	EPA 200.2	mg/kg	1	24	25	19	11	11	22	13	<1	4
Copper	EPA 200.2	mg/kg	1	ю	86	26	32	48	5	128	7	9
Lead	EPA 200.2	mg/kg	1	20	962	279	209	191	33	270	<1	4
Mercury	EPA 200.2	mg/kg	0.1	<0.1	0.3	0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Nickel	EPA 200.2	mg/kg	1	2	6	4	10	6	ъ	9	1	<0.1
Zinc	EPA 200.2	mg/kg	1	16	960	210	945	575	16	1360	8	8
Hexavalent Chromium	USEPA 3060A	mg/kg	1		1		-				-	-
Trivalent Chromium	In House	mg/kg	1									
WAD Cyanide	NEPC 9.1	mg/kg	1	1	1	1	4		<1	4	1	-
					Referenc	Reference AF56.Rev4 Date Is	Date Issued : 3/11/2010					

					Qua	lity C	Quality Control Report	Repo	ort						
Client Sample ID				BH1 0-0.5				BH4 0.9-1.0	a			8	BH10 0.4-0.5	5	
Laboratory Sample Number				GS13482-1				GS13482-10	0			6	GS13482-20	0	
QC Parameter				Matrix Spike			La	Laboratory Duplicate	plicate			Labon	Laboratory Duplicate	olicate	
			Matrix Spike (%R)	Recovery Limit Acceptance Criteria(%)	Within GSL Acceptance Criteria (Pass/Fail)	Original Result	Duplicate	%RPD	%RPD Acceptance Criteria	Within GSL Acceptance Criteria (Pass/Fail)	Original Du Result	Duplicate %	%RPD A	%RPD / Acceptance / Criteria (Within GSL Acceptance Criteria (Pass/Fail)
Analytes	Units	LOR													
Moisture	%	0.1	AN	NA	NA	1	1	1	≤20%		1	1	1	≤20%	
Н	pH Units	0.1	NA	NA	NA	-	-	1	±0.2 pH Units	-	-	1	÷	±0.2 pH Units	
Cation Exchange Capacity															
Electrical Conductivity	dS/m	0.01	NA	NA	NA				≤30%				-	≤30%	
Soil Chemical Method Used		-	NA	NA	NA			-	-			-	-		
Exchangeable Calcium	mg/Kg	1	NA	NA	NA				≤30%			1	1	≤30%	-
Exchangeable Magnesium	mg/Kg	1	NA	NA	NA	1	1	1	≤30%	-	-	1	1	≤30%	ł
Exchangeable Potassium	mg/Kg	1	NA	NA	NA	-	1	I	≤30%			-	I	≤30%	I
Exchangeable Sodium	mg/Kg	1	NA	NA	NA				≤30%					≤30%	
CEC	MEQ%	0.1	NA	NA	NA				≤30%					≤30%	
Metals															
Arsenic	mg/kg	-	102%	70-130%	Pass	5	5	<1%	No limit	Pass	10	10	<1%	≤15%	Pass
Cadmium	mg/kg	0.1	%96	70-130%	Pass	0.3	0.5	50%	No limit	Pass	0.3	0.3	<1%	No limit	Pass
Chromium	mg/kg	1	93%	70-130%	Pass	11	12	8%	≤15%	Pass	6	6	<1%	No limit	Pass
Copper	mg/kg	-1	88%	70-130%	Pass	22	24	8%	≤15%	Pass	19	19	<1%	No limit	Pass
Lead	mg/kg	-1	95%	70-130%	Pass	82	91	10%	≤15%	Pass	73	82	12%	≤15%	Pass
Mercury	mg/kg	0.1		70-130%		0.1	0.1	<1%	No limit	Pass	<0.1	<0.1	<1%	No limit	Pass
Nickel	mg/kg	-	101%	70-130%	Pass	4	4	<1%	No limit	Pass	∞	7	13%	No limit	Pass
Zinc	mg/kg	4	73%	70-130%	Pass	172	201	16%	≤15%	Pass	355	373	5%	≤15%	Pass
Hexavalent Chromium	mg/kg	1		80-120%		-	-	I	≤20%	-		I	1	≤20%	
Trivalent Chromium	mg/kg	1	NA	NA	NA	ł	-	I	≤20%			I	1	≤20%	l
WAD Cyanide	mg/kg	1		80-120%		1		1	≤20%			-	1	≤20%	-
Commonte .						Reference AF56.R	Reference AF56.Rev4 Date Issued : 3/11/2010	3/11/2010							

Comments : 1. NA = Not Applicable

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 7 of 36

					Qua	lity C	Quality Control Report	l Repc	ort						
Client Sample ID				BH10 0.8-1.0				BH15 0.3-0.5	, i			BH	BH20 1.0-1.1		
Laboratory Sample Number				GS13482-21				GS13482-30	0			6	GS13482-40		
QC Parameter				Matrix Spike			Ľ	Laboratory Duplicate	plicate			Labora	Laboratory Duplicate	ate	
			Matrix Spike (%R)	Recovery Limit Acceptance Criteria(%)	Within GSL Acceptance Criteria (Pass/Fail)	Original Result	Duplicate	%RPD	%RPD Acceptance Criteria	Within GSL Acceptance Criteria (Pass/Fail)	Original Du Result	Duplicate %	%RPD Acc	%RPD W Acceptance Ac Criteria (F	Within GSL Acceptance Criteria (Pass/Fail)
Analytes	Units	LOR													
Moisture	%	0.1	NA	NA	NA	:	-		≤20%			1		≤20%	
Н	pH Units	0.1	NA	NA	NA				±0.2 pH Units				±0.2	±0.2 pH Units	
Cation Exchange Capacity															
Electrical Conductivity	dS/m	0.01	NA	NA	NA				≤30%					≤30%	
Soil Chemical Method Used			NA	NA	NA							-			
Exchangeable Calcium	mg/Kg	1	NA	NA	NA	-			≤30%			-	1	≤30%	
Exchangeable Magnesium	mg/Kg	1	NA	NA	NA	1	-	1	≤30%	-	-	-	-	≤30%	
Exchangeable Potassium	mg/Kg	1	NA	NA	NA	1	-	-	≤30%	-	-		-	≤30%	
Exchangeable Sodium	mg/Kg	1	NA	NA	NA	-	-		≤30%	-		1	1	≤30%	
CEC	MEQ%	0.1	NA	NA	NA				≤30%					≤30%	
Metals															
Arsenic	mg/kg	1	109%	70-130%	Pass	16	15	%9	≤15%	Pass	6			Vo limit	Pass
Cadmium	mg/kg	0.1	%66	70-130%	Pass	<0.1	<0.1	<1%	No limit	Pass	0.4			No limit	Pass
Chromium	mg/kg	1	%96	70-130%	Pass	23	21	%6	≤15%	Pass	20	21	5%	≤15%	Pass
Copper	mg/kg	ц	89%	70-130%	Pass	00	9	29%	No limit	Pass				≤15%	Pass
Lead	mg/kg	1	93%	70-130%	Pass	37	35	8%	≤15%	Pass		482		≤15%	Pass
Mercury	mg/kg	0.1		70-130%		<0.1	<0.1	<1%	No limit	Pass	0.5	0.6 2		No limit	Pass
Nickel	mg/kg	ц	98%	70-130%	Pass	9	5	18%	No limit	Pass	5		. 0	o limit	Pass
Zinc	mg/kg	1	91%	70-130%	Pass	17	19	11%	≤15%	Pass	369	395	7%	≤15%	Pass
Hexavalent Chromium	mg/kg	1		80-120%			-		≤20%			1	-	≤20%	
Trivalent Chromium	mg/kg	ц.	NA	NA	AN	-		I	≤20%					≤20%	
WAD Cyanide	mg/kg	ц.	-	80-120%		4	4	<1%	≤20%	Pass	-	1	1	≤20%	
Commute .						Reference AF56.R	Reference AF56.Rev4 Date Issued : 3/11/2010	:3/11/2010							

Comments : 1. NA = Not Applicable

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 8 of 36

				ر موال	ry cu	duality cultural hepoil	201						
Client Sample ID													
Laboratory Sample Number													
QC Parameter			Method Blank	l Blank	Laborat	Laboratory Control Standard (LCS)	rd (LCS)	Certified	Certified Reference Material - AGAL10	laterial -	Certified	Certified Reference Material AGAL12	aterial -
			Method Blank	Within GSL	LCS (%R)	LCS Acceptance	Within GSL	CRM (%R)	CRM	Within	CRM (%R)	CRM	Within
				Acceptance		Criteria	Acceptance		Acceptanc	GSL		Acceptanc	GSL
				Criteria (<lor) (Pass/Fail)</lor) 			Criteria (Pass/Fail)		e Criteria Acceptanc e Criteria	Acceptanc e Criteria		e Criteria Acceptanc e Criteria	Acceptanc e Criteria
Analytes	Units	LOR											
Moisture	%	0.1	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Н	pH Units	0.1	NA	NA	7.03	7.00±0.1 pH Units	Pass	NA	NA	NA	NA	NA	NA
Cation Exchange Capacity													
Electrical Conductivity	dS/m	0.01	<0.01	Pass	%66	70-130%	Pass	NA	NA	NA	NA	NA	NA
Soil Chemical Method Used			15B1		NA	NA	NA	NA	NA	NA	NA	NA	NA
Exchangeable Calcium	mg/Kg	1	1>	Pass	NA	NA	NA	NA	NA	NA	NA	NA	NA
Exchangeable Magnesium	mg/Kg	1	4	Pass	NA	NA	٨A	NA	NA	NA	NA	NA	NA
Exchangeable Potassium	mg/Kg	1	7	Pass	NA	NA	٨A	NA	NA	NA	NA	NA	NA
Exchangeable Sodium	mg/Kg	1	<1	Pass	NA	NA	NA	NA	NA	NA	NA	NA	NA
CEC	MEQ%	0.1	<0.1	Pass	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals													
Arsenic	mg/kg	1	1>	Pass	114%	85-115%	Pass	113%	70-130%	Pass	119%	70-130%	Pass
Cadmium	mg/kg	0.1	<0.1	Pass	113%	85-115%	Pass	103%	85-115%	Pass	87%	75-125%	Pass
Chromium	mg/kg	1	<1	Pass	107%	85-115%	Pass	98%	75-125%	Pass	93%	80-120%	Pass
Copper	mg/kg	1	4	Pass	86%	85-115%	Pass	896%	85-115%	Pass	91%	85-115%	Pass
Lead	mg/kg	1	4	Pass	89%	85-115%	Pass	102%	85-115%	Pass	100%	80-120%	Pass
Mercury	mg/kg	0.1	<0.1	Pass		85-115%	-	85%	80-120%	Pass		75-125%	1
Nickel	mg/kg	1	4	Pass	108%	85-115%	Pass	101%	70-130%	Pass	89%	75-125%	Pass
Zinc	mg/kg	1	<1	Pass	107%	85-115%	Pass	97%	85-115%	Pass	95%	85-115%	Pass
Hexavalent Chromium	mg/kg	1	<1	Pass	%66	90-110%	Pass	<2s	±2s	Pass	1	±2s	-
Trivalent Chromium	mg/kg	1	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA
WAD Cyanide	mg/kg	1	<1	Pass		80-120%			±2s		NA	NA	NA
				Refer	ence AF56.Rev4 [Reference AF56.Rev4 Date Issued : 3/11/2010							

Quality Control Report

Comments :

1- The analysis of hexavalent chromium involves the analysis of in-house reference materials.

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 9 of 36

		Techni	cal Ho	nical Holding Time Compliance Report	
Client Sample ID			All Samples		
Laboratory Sample Number			All Samples		
Date Sampled			17/10/2013		
Analyte	THT Parameters	THT (Days)			
	Date Analysed		28/10/2013		
Moisture	Analysis Time (Days)	14	11		
	THT Compliant		Yes		
	Date Analysed		25/10/2013		
рн	Analysis Time (Days)	14	8		
	THT Compliant		Yes		
	Date Digested		29/10/2013		
Metals	Analysis Time (Days)	180	12		
	THT Compliant		Yes		
	Date Analysed		28/10/2013		
Hexavalent chromium	Analysis Time (Days)	28	11		
	THT Compliant		Yes		
	Date Extracted		27/10/2013		
WAD cyanide	Analysis Time (Days)	14	10		
	THT Compliant		Yes		

Reference AF56.Rev4 Date Issued : 3/11/2010

Groundswell Laboratories Pty Ltd ABN 24133248923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 86691450 Fax (03) 86691451 E-mail : admin@groundswelllabs.com.au Page 10 of 36

				TRH B	TRH BTEXN Analytical Results	Analyti	cal Re	sults					
Client Samule ID				RH1 0-0 5	RH105-10	RH2 0-0 5	RH3 0-0 5	RH3 0 5-1 0	RH4 0 3-0 5	RH5 0 2-0 4	RH6.0.2-0.4	RH7 0 4-0 6	RH8 0 1-0 3
Laboratory Sample Number				GS13482-1	GS13482-2	GS13482-4	GS13482-6	GS13482-7	GS13482-9	GS13482-11	GS13482-13		GS13482-17
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
Analytes	Literature	Units	LOR										
	Reference												
Moisture	NEPM 102	%	0.1	18.0	19.0	28.0	16.0	20.0	17.0	16.0	13.0	19.0	9.4
TRH Fraction													
TRH C ₆₋₉	GSLS	mg/Kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH C ₆₋₁₀	GSLS	mg/Kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH C ₆₋₁₀ less BTEX(F1)	GSLS	mg/Kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH C ₁₀₋₁₄	500.2	mg/Kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TRH C ₁₅₋₂₈	500.2	mg/Kg	100	<100	<100	<100	<100	<100	160	190	170	<100	130
TRH C ₂₉₋₃₆	500.2	mg/Kg	50	<50	<50	<50	<50	<50	170	180	170	<50	190
TRH C ₁₀₋₃₆ Sum		mg/Kg	100	<100	<100	<100	<100	<100	330	370	340	<100	320
TRH >C 10-16	500.2	mg/Kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TRH >C ₁₆₋₃₄	500.2	mg/Kg	100	<100	<100	<100	<100	<100	270	270	260	<100	210
TRH >C 34-40	500.2	mg/Kg	50	<50	<50	<50	<50	<50	170	200	170	<50	210
TRH >C 10-40 Sum		mg/Kg	100	<100	<100	<100	<100	<100	440	470	430	<100	420
BTEXN													
Benzene	GSLS	mg/Kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	GSLS	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	GSLS	mg/kg	1	41	4	<1	<1	<1	<1	4	4	4	<1
meta- & para-Xylene	GSLS	mg/kg	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
ortho-Xylene	GSLS	mg/kg	1	<1	4	<1	<1	<1	<1	4	4	4	<1
Naphthalene	GSLS	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sum of BTEXN		mg/Kg	з	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Total Xylenes		mg/Kg	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
BTEXN Surrogates													
aaa-Trifluorotoluene	GSLS	%	1	109%	%66	89%	104%	95%	97%	93%	97%	83%	97%
					Reference AF56	Reference AF56.Rev4 Date Issued : 3/11/2010	3/11/2010						

Comments :

TRH & BTEXN results reported on a dry weight basis
 Organics analysis has been conducted by Envirolab Melbourne, report#2741, NATA accreditation #21192

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 11 of 36

					BIEXN ANAIYTICA	Analyti	_	Kesuits					
					0 1 0 0 0 1 0 L	1000		10000010	0000110		100001	1000	100010
Lient Sample IU Laboratory Samula Number				6C1240-10	C.0-4-0 0.4-0-5	6C12482-22	C-0-2118	6212482-26	6512487-78		6513487-37	2.0-4.0 81H8 2.0-2.0 /1H8 2.0-2.0 81H8 2.0-2.0 21H8 2.0-2.0 21H8 2.0-2.0 2.0-2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	60.1240.4-0.5
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013			17/10/2013
Analytes	Literature Reference	Units	LOR										
Moisture	NEPM 102	%	0.1	13.0	14.0	23.0	27.0	20.0	21.0	31.0	28.0	19.0	15.0
TRH Fraction													
TRH C ₆₋₉	GSLS	mg/Kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH C ₆₋₁₀	GSLS	mg/Kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH C ₆₋₁₀ less BTEX(F1)	GSLS	mg/Kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH C ₁₀₋₁₄	500.2	mg/Kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TRH C ₁₅₋₂₈	500.2	mg/Kg	100	280	<100	320	210	<100	<100	<100	<100	<100	<100
TRH C ₂₉₋₃₆	500.2	mg/Kg	50	420	110	340	280	<50	170	<50	<50	<50	<50
TRH C ₁₀₋₃₆ Sum		mg/Kg	100	002	110	099	490	<100	170	<100	<100	<100	<100
TRH >C 10-16	500.2	mg/Kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TRH >C ₁₆₋₃₄	500.2	mg/Kg	100	520	<100	500	350	<100	190	<100	<100	<100	<100
TRH >C 34-40	500.2	mg/Kg	50	380	160	320	280	<50	210	<50	<50	<50	<50
TRH >C 10-40 Sum		mg/Kg	100	006	160	820	630	<100	400	<100	<100	<100	<100
BTEXN													
Benzene	GSLS	mg/Kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	GSLS	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	GSLS	mg/kg	1	<1	4	<1	<1	<1	<1	4	4	4	<1
meta- & para-Xylene	GSLS	mg/kg	2	<2	<2	<2	<2	<2	<2	<2	<2	⊲2	<2
ortho-Xylene	GSLS	mg/kg	1	<1	4	<1	<1	<1	<1	4	4	4	<1
Naphthalene	GSLS	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sum of BTEXN		mg/Kg	3	<3	<3	<3	<3	<3	<3	⊲3	<3	⊲3	<3
Total Xylenes		mg/Kg	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
BTEXN Surrogates													
aaa-Trifluorotoluene	GSLS	%	1	98%	95%	97%	80%	98%	91%	85%	89%	88%	85%
					Reference AF56	Reference AF56.Rev4 Date Issued : 3/11/2010	3/11/2010						

Results
lytical
Anal
BTEXN
TRH

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 12 of 36

					DIEAN Analyucal	Anaiyu		Results					
									-			-	
Client Sample ID				BH19 0.2-0.4	BH20 0.2-0.4	BH20 1.0-1.1	BH20 0.3-0.5	BH22 0.2-0.3	D1	D2	D3	D4	
Laboratory Sample Number				GS13482-38	GS13482-39	GS13482-40	GS13482-42	GS13482-43	GS13482-44	GS13482-45	GS13482-46	GS13482-47	
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	
Analytes	Literature Reference	Units	LOR										
Moisture	NEPM 102	%	0.1	21.0	17.0	19.0	22.0	20.0	12.0	20.0	30.0	24.0	
TRH Fraction													
TRH C ₆₋₉	GSLS	mg/Kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	
TRH C ₆₋₁₀	GSLS	mg/Kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	
TRH C ₆₋₁₀ less BTEX(F1)	GSLS	mg/Kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	
TRH C 10-14	500.2	mg/Kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	
TRH C ₁₅₋₂₈	500.2	mg/Kg	100	<100	510	250	650	190	120	180	240	210	
TRH C ₂₉₋₃₆	500.2	mg/Kg	50	100	640	370	069	320	230	240	170	290	
TRH C ₁₀₋₃₆ Sum		mg/Kg	100	100	1150	620	1340	520	350	420	410	500	
TRH >C 10-16	500.2	mg/Kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	
TRH >C 16-34	500.2	mg/Kg	100	100	970	460	1120	380	230	300	300	260	
TRH >C 34-40	500.2	mg/Kg	50	120	380	300	440	270	240	240	240	290	
TRH >C 10-40 Sum		mg/Kg	100	220	1350	760	1560	650	470	540	540	550	
BTEXN													
Benzene	GSLS	mg/Kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Toluene	GSLS	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	GSLS	mg/kg	1	<1	4	<1	<1	<1	<1	4	4	4	
meta- & para-Xylene	GSLS	mg/kg	2	<2	⊲2	<2	<2	<2	<2	<2	<2	⊲2	
ortho-Xylene	GSLS	mg/kg	1	<1	4	<1	<1	<1	<1	4	4	4	
Naphthalene	GSLS	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Sum of BTEXN		mg/Kg	3	<3	<3	<3	<3	<3	<3	<3	<3	<3	
Total Xylenes		mg/Kg	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	
BTEXN Surrogates													
aaa-Trifluorotoluene	GSLS	%	1	%06	88%	83%	94%	88%	86%	86%	83%	96%	
					Reference AF56.	Reference AF56.Rev4 Date Issued : 3/11/2010	3/11/2010						

TRH BTEXN Analytical Results

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 13 of 36

				TRH B	TEXN /	TRH BTEXN Analytical Results	ults		
Client Sample ID				R1	R2				
Laboratory Sample Number				GS13482-48	GS13482-49				
Date Sampled				17/10/2013	17/10/2013				
TRH Fraction	Literature	Units	LOR						
	Reference								
TRH C 6-9	GSLS	hg/L	10	<10	<10				
TRH C 6-10	GSLS	µg/L	10	<10	<10				
TRH C ₆₋₁₀ less BTEX(F1)	GSLS	µg/L	10	<10	<10				
TRH C ₁₀₋₁₄	500.1	hg/L	100	<100	<100				
TRH C ₁₅₋₂₈	500.1	µg/L	200	<200	<200				
TRH C ₂₉₋₃₆	500.2	µg/L	100	<100	<100				
TRH C ₁₀₋₃₆ Sum		µg/L	200	<200	<200				
TRH >C 10-16	200.2	hg/L	100	<100	<100				
TRH >C 16-34	500.2	µg/L	200	<200	<200				
TRH >C 34-40	500.2	µg/L	100	<100	<100				
TRH >C 10-40 Sum		µg/L	200	<200	<200				
BTEXN									
Benzene	GSLS	µg/L	1	<1	<1				
Toluene	GSLS	µg/L	1	<1	4				
Ethylbenzene	GSLS	µg/L	1	<1	4				
meta- & para-Xylene	GSLS	µg/L	2	<2	<2				
ortho-Xylene	GSLS	µg/L	1	<1	<1				
Naphthalene	GSLS	μg/L	1	<1	<1				
Sum of BTEXN		µg/L	3	<3	<3				
Total Xylenes		µg/L	2	<2	<2				
BTEXN Surrogates									
aaa-Trifluorotoluene	GSLS	%	1	89%	96%				
Comments .					Reference AF56.	Reference AF56.Rev4 Date Issued : 3/11/2010			

Comments : 1. Samples R1 & R2 are water samples

Groundswell Laboratories Pty Ltd ABN 24.133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 14 of 36

				TRH 8	TRH & BTEXN Quality Control Report	N Qu	ality	Cont	trol Re	eport					
Client Sample ID				BH1 0-0.5				BH1 0-0.5	5 S				BH9 0.4-0.6	-0.6	
Laboratory Sample Number				GS13482-1				GS13482-1	-				GS13482-18	2-18	
QC Parameter				Matrix Spike			Lab	Laboratory Duplicate	ıplicate			Га	Laboratory Duplicate	Duplicate	
			Matrix Spike (%R)	Recovery Limit Acceptance Criteria(%)	Within GSL Acceptance Criteria (Pass/Fail)	Original Result	Duplicate	%RPD	%RPD Acceptance Criteria	Within GSL Acceptance Criteria (Pass/Fail)	Original Duplicate Result	Duplicate	%RPD	%RPD Acceptance Criteria	Within GSL Acceptance Criteria (Pass/Fail)
TRH Fraction	Units	LOR													
TRH C ₆₋₉	mg/kg	25	88%	70-130%	Pass	<25	<25	NA	No Limit	Pass	<25	<25	NA	No Limit	Pass
TRH C 6-10	mg/kg	25	78%	70-130%	Pass	<25	<25	NA	No Limit	Pass	<25	<25	NA	No Limit	Pass
TRH C 6-10 less BTEX(F1)	mg/kg	25		70-130%	-		-		≤30%				-	≤30%	
TRH C 10-14	mg/kg	50	83%	70-130%	Pass	ł	I	I	≤30%	1	I	I	ł	≤30%	I
TRH C 15-28	mg/kg	100	91%	70-130%	Pass	I	I	I	≤30%	I	I	I	ł	≤30%	
TRH C ₂₉₋₃₆	mg/kg	50	95%	70-130%	Pass		-		≤30%			-	-	≤30%	
TRH >C 10-16	mg/kg	50		70-130%		-	-		≤30%	-		1	-	≤30%	
TRH >C 16-34	mg/kg	100	-	70-130%		ł	I	I	≤30%	I	I	I	ł	≤30%	-
TRH >C 34-40	mg/kg	50		70-130%	-		-		≤30%				-	≤30%	
BTEXN															
Benzene	mg/Kg	0.2	80%	70-130%	Pass	<0.2	<0.2	NA	No Limit	Pass	<0.2	<0.2	NA	No Limit	Pass
Toluene	mg/kg	0.5	84%	70-130%	Pass	<0.5	<0.5	NA	No Limit	Pass	<0.5	<0.5	NA	No Limit	Pass
Ethylbenzene	mg/kg	1	83%	70-130%	Pass	<1	<1	NA	No Limit	Pass	4	4	NA	No Limit	Pass
meta- & para-Xylene	mg/kg	2	83%	70-130%	Pass	<2	<2	NA	No Limit	Pass	4	⊲2	NA	No Limit	Pass
ortho-Xylene	mg/kg	1	85%	70-130%	Pass	4	<1	NA	No Limit	Pass	4	4	NA	No Limit	Pass
Naphthalene	mg/kg	1		70-130%		<1	<1	NA	No Limit	Pass	<1	<1	NA	No Limit	Pass
			Refer	Reference AF56.Rev4 Date Issued : 3/11/2010	e Issued : 3/11/2010										

Comments : 1. NA = Not Applicable

Groundswell Laboratories Pty Ltd ABN 24.133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 15 of 36

TRH & BTEXN Quality Control Report

			5		}				,			
Client Sample ID					BH10 0.4-0.5	-0.5				BH20 1.0-1.1	0-1.1	
Laboratory Sample Number					GS13482-20	-20				GS13482-40	32-40	
QC Parameter				Lab	Laboratory Duplicate	uplicate				Laboratory Duplicate	Duplicate	
			Original Result	Duplicate	%RPD	%RPD Acceptance Criteria	Within GSL Acceptance Criteria (Pass/Fail)	Original Result	Duplicate	%RPD	%RPD Acceptance Criteria	Within GSL Acceptance Criteria (Pass/Fail)
TRH Fraction	Units	LOR										
TRH C 6-9	mg/kg	25		-	1	≤30%		1	-	1	≤30%	
TRH C ₆₋₁₀	mg/kg	25		1		≤30%	-	!		-	≤30%	
TRH C ₆₋₁₀ less BTEX(F1)	mg/kg	25	1	1	1	≤30%	1		1		≤30%	1
TRH C 10-14	mg/kg	50	<50	<50	NA	No Limit	Pass	<50	<50	NA	No Limit	Pass
TRH C ₁₅₋₂₈	mg/kg	100	<100	<100	NA	No Limit	Pass	250	230	8%	≤30%	Pass
TRH C ₂₉₋₃₆	mg/kg	50	110	90	20%	≤30%	Pass	370	330	11%	≤30%	Pass
TRH >C 10-16	mg/kg	50	<50	<50	NA	No Limit	Pass	<50	<50	NA	No Limit	Pass
TRH >C ₁₆₋₃₄	mg/kg	100	<100	<100	NA	No Limit	Pass	460	430	7%	≤30%	Pass
TRH >C 34-40	mg/kg	50	160	120	28%	≤30%	Pass	300	260	14%	≤30%	Pass
BTEXN												
Benzene	mg/Kg	0.2		1	1	≤30%		ł	1	1	≤30%	
Toluene	mg/kg	0.5		1		≤30%		!	1	-	≤30%	
Ethylbenzene	mg/kg	1		1		≤30%		!	1	!	≤30%	
meta- & para-Xylene	mg/kg	2	-	1		≤30%		1	1	1	≤30%	
ortho-Xylene	mg/kg	1	-	1		≤30%		!	1	!	≤30%	
Naphthalene	mg/kg	1				≤30%		-			≤30%	
	Refer	ence AF56.R	Reference AF56.Rev4 Date Issued : 3/11/2010	ed : 3/11/2010								

Comments :

NA = Not Applicable

l Report
Control
I Quality
FRH & BTEXN
TRH 8

Laboratory Sample Number										
		_								
QC Parameter			Me	Method Blank	Laborato	Laboratory Control Standard (LCS)	dard (LCS)	Cert	Certified Reference Material	Material
			Method Blank	Within GSL Acceptance Criteria (<lor) (Pass/Fail)</lor) 	LCS (%R)	LCS Acceptance Criteria	Within GSL Acceptance Criteria (Pass/Fail)	CRM Recovery (mg/Kg)	CRM Acceptance Criteria (mg/Kg)	Within GSL Acceptance Criteria (Pass/Fail)
TRH Fraction	Units	LOR								
TRH C ₆₋₉	mg/kg	25	<25	Pass	92%	70-130%	Pass	NA	NA	NA
TRH C ₆₋₁₀	mg/kg	25	<25	Pass	81%	70-130%	Pass	NA	NA	NA
TRH C ₆₋₁₀ less BTEX(F1)	mg/kg	25	<25	Pass		70-130%	1	NA	NA	NA
TRH C ₁₀₋₁₄	mg/kg	50	<50	Pass	74%	70-130%	Pass			
TRH C ₁₅₋₂₈	mg/kg	100	<100	Pass	75%	70-130%	Pass	3610	2790-4510	Pass
TRH C ₂₉₋₃₆	mg/kg	50	<50	Pass	88%	70-130%	Pass			
TRH >C 10-16	mg/kg	50	<50	Pass	%0 <i>L</i>	70-130%	Pass	٧N	NA	NA
TRH >C ₁₆₋₃₄	mg/kg	100	<100	Pass	79%	70-130%	Pass	NA	NA	NA
TRH >C ₃₄₋₄₀	mg/kg	50	<50	Pass	128%	70-130%	Pass	NA	NA	NA
BTEXN										
Benzene	mg/Kg	0.2	<0.2	Pass	88%	70-130%	Pass	NA	NA	NA
Toluene	mg/kg	0.5	<0.5	Pass	95%	70-130%	Pass	NA	NA	NA
Ethylbenzene	mg/kg	1	41	Pass	93%	70-130%	Pass	NA	NA	NA
meta- & para-Xylene	mg/kg	2	<2	Pass	%06	70-130%	Pass	NA	NA	NA
ortho-Xylene	mg/kg	1	$\stackrel{<}{\sim}$	Pass	93%	70-130%	Pass	NA	NA	NA
Naphthalene	mg/kg	1	$\stackrel{<}{\sim}$	Pass	1	70-130%		ΝA	NA	NA

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 17 of 36

Client Sample ID			All Samples						
Laboratory Sample Number			All Samples						
Date Sampled			17/10/2013						
Analytes	THT Parameters	THT (Days)							
	Date Extracted		28/10/2013						
VTRH & BTEXN	Analysis Time (Days)	14	11						
	THT Compliant		Yes						
	Date Extracted		28/10/2013						
svTRH	Analysis Time (Days)	14	11						
	THT Compliant		Yes						
				Beforence AEEE Boud Date Ircured - 2 /11 /2010	Date lection - 2/11/2	010			

TRH & BTEXN Technical Holding Time Compliance Report

Reference AF56.Rev4 Date Issued : 3/11/2010

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 18 of 36

					VOC F	VOC Results	(0)			
Client Sample ID				BH2 0-0.5	BH7 0.4-0.6	BH17 0.3-0.5	BH17 0.3-0.5 BH19 0.2-0.4	_		
Laboratory Sample Number				GS13482-4	GS13482-15	GS13482-34	GS13482-38			
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013			
Analytes	Literature	Units	LOR							
Moisture	NFPC 102	%	0.1	28.0	19.0	19.0	21.0			
VOC		2	1		2	2	0			
Dichlorodifluoromethane	GSLS	mg/Kg	1	7	4	4	4			
Chloromethane	GSLS	mg/Kg	1	4	4	4	4			
Vinyl Chloride	GSLS	mg/Kg	1	_1	<1	<1	<1			
Bromomethane	GSLS	mg/Kg	1	4	4	41	4			
Chloroethane	GSLS	mg/Kg	1	41	<1	41	4			
Trichlorofluoromethane	GSLS	mg/Kg	1	1	<1	~1	4			
1,1-Dichloroethene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
trans-1,2-dichloroethene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,1-dichloroethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
cis-1,2-dichloroethene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
bromochloromethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
chloroform	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
2,2-dichloropropane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,2-dichloroethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,1,1-trichloroethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,1-dichloropropene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
Cyclohexane	GSLS	mg/Kg	1	4	4	4	4			
carbon tetrachloride	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
Benzene	GSLS	mg/Kg	0.2	<0.2	<0.2	<0.2	<0.2			
dibromomethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,2-dichloropropane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
trichloroethene	GSLS	mg/Kg	0.5	<0.5	1	<0.5	<0.5			
bromodichloromethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
trans-1,3-dichloropropene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
cis-1,3-dichloropropene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,1,2-trichloroethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
Toluene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,3-dichloropropane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
dibromochloromethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,2-dibromoethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
tetrachloroethene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,1,1,2-tetrachloroethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
chlorobenzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
					Reference AF55.Rev4 Date Issued : 3/11/2010	Date Issued : 3/11	/2010			

					VOC	VOC Results	6			
Client Sample ID				BH2 0-0.5	BH7 0.4-0.6	BH17 0.3-0.5				
Laboratory Sample Number				GS13482-4	GS13482-15	GS13482-34	GS13482-38			
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013			
VOC	Literature Beference	Units	LOR					 		
Ethvlhenzene	USI S	mø/Kø	0.5	<0.5	×0 5	<0 5	×0 5			
bromoform	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
m+p-xylene	GSLS	mg/Kg	1	4	<2	3	4>			
styrene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,1,2,2-tetrachloroethane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
o-Xylene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,2,3-trichloropropane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
isopropylbenzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
bromobenzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
n-propyl benzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
2-chlorotoluene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
4-chlorotoluene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,3,5-trimethyl benzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
tert-butyl benzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,2,4-trimethyl benzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1, 3-dichlorobenzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
sec-butyl benzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,4-dichlorobenzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
4-isopropyl toluene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,2-dichlorobenzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
n-butyl benzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,2-dibromo-3-chloropropane	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,2,4-trichlorobenzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
hexachlorobutadiene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
1,2,3-trichlorobenzene	GSLS	mg/Kg	0.5	<0.5	<0.5	<0.5	<0.5			
VOC Surrogates										
Dibromofluoromethane	GSLS	%	1	%06	85%	%6 <i>L</i>	80%			
aaa-Trifluorotoluene	GSLS	%	1	85%	78%	84%	82%			
Toluene-d8	GSLS	%	1	82%	97%	92%	%06			
4-bromofluorobenzene	GSLS	%	1	89%	91%	89%	89%			
					Reference AF55.Rev4 Date Issued : 3/11/2010	Date Issued : 3/11	/2010			

Comments : 1. VOC results reported on a dry weight basis.

Client Sample (D Bill of Client Sample (D) Bill of Cli						500			202				
Intert Interned Bank Method Bank	Client Sample ID					BH19 0.2-(0.4						
Image: constraint of the series of	Laboratory Sample Number					GS13482-	38						
Orignal Duplicate X6PD With of the constrained	QC Parameter				La	boratory Du	plicate		Method	Blank	Labor	atory Control Star	dard (LCS)
Rott Acceptance Accettance Acceptanc Acceptanc				Original	Duplicate	%RPD	%RPD	Within GSL	Method Blank	Within GSL	LCS (%R)	LCS Acceptance	Within GSL
Party is the image of				Result			Acceptance	Acceptance		Acceptance		Criteria	Acceptance
							Criteria	Criteria (Pass/Fail)	0	Criteria (<lor) (Pass/Fail)</lor) 			Criteria (Pass/Fail)
9 mg/kg 1 <1	VHC	Units	LOR							han han d			
	Dichlorodifluoromethane	mg/Kg	1	4	4	NA	No Limit	Pass	<1	Pass		70-130%	
	Chloromethane	mg/Kg	1	<1	<1	NA	No Limit	Pass	<1	Pass		70-130%	
	Vinyl Chloride	mg/Kg	1	$\stackrel{<}{\sim}$	<1	NA	No Limit	Pass	<1	Pass		70-130%	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromomethane	mg/Kg	1	<1	4	NA	No Limit	Pass	<1	Pass	I	70-130%	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chloroethane	mg/Kg	1	<1	41	NA	No Limit	Pass	<1	Pass	1	70-130%	
	Trichlorofluoromethane	mg/Kg	1	<1	4	NA	No Limit	Pass	<1	Pass	I	70-130%	
mg/kg 0.5 0.05	1,1-Dichloroethene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	
mg/kg 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <th< td=""><td>trans-1,2-dichloroethene</td><td>mg/Kg</td><td>0.5</td><td><0.5</td><td><0.5</td><td>NA</td><td>No Limit</td><td>Pass</td><td><0.5</td><td>Pass</td><td>I</td><td>70-130%</td><td></td></th<>	trans-1,2-dichloroethene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	I	70-130%	
mg/kg 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <th< td=""><td>1,1-dichloroethane</td><td>mg/Kg</td><td>0.5</td><td><0.5</td><td><0.5</td><td>NA</td><td>No Limit</td><td>Pass</td><td><0.5</td><td>Pass</td><td>81%</td><td>70-130%</td><td>Pass</td></th<>	1,1-dichloroethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	81%	70-130%	Pass
	cis-1,2-dichloroethene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	-
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	bromochloromethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	chloroform	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	76%	70-130%	Pass
mg/kg 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <th< td=""><td>2,2-dichloropropane</td><td>mg/Kg</td><td>0.5</td><td><0.5</td><td><0.5</td><td>NA</td><td>No Limit</td><td>Pass</td><td><0.5</td><td>Pass</td><td></td><td>70-130%</td><td></td></th<>	2,2-dichloropropane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
mg/kg 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <th< td=""><td>1,2-dichloroethane</td><td>mg/Kg</td><td>0.5</td><td><0.5</td><td><0.5</td><td>NA</td><td>No Limit</td><td>Pass</td><td><0.5</td><td>Pass</td><td>83%</td><td>70-130%</td><td>Pass</td></th<>	1,2-dichloroethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	83%	70-130%	Pass
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	1,1,1-trichloroethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	97%	70-130%	Pass
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	1,1-dichloropropene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Cyclohexane	mg/Kg	1	<1	<1	NA	No Limit	Pass	<1	Pass		70-130%	
mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <th< td=""><td>carbon tetrachloride</td><td>mg/Kg</td><td>0.5</td><td><0.5</td><td><0.5</td><td>NA</td><td>No Limit</td><td>Pass</td><td><0.5</td><td>Pass</td><td></td><td>70-130%</td><td></td></th<>	carbon tetrachloride	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
mg/kg 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.130% mg/kg 0.5 <0.5 <0.5 <0.5 <th< td=""><td>Benzene</td><td>mg/Kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>NA</td><td>No Limit</td><td>Pass</td><td><0.2</td><td>Pass</td><td>1</td><td>70-130%</td><td>1</td></th<>	Benzene	mg/Kg	0.2	<0.2	<0.2	NA	No Limit	Pass	<0.2	Pass	1	70-130%	1
mg/kg 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA No Limit Pass <0.5 70-130% ng/kg 0.5 <0.5	dibromomethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
mg/kg 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA No Limit Pass <0.5 Pass <0.130% mg/kg 0.5 <0.5	1,2-dichloropropane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
mg/kg 0.5 <0.5 <0.5 NA No Limit Pass <0.5 Pass 60-140% ng/kg 0.5 <0.5	trichloroethene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	1	Pass	84%	70-130%	Pass
Te mg/kg 0.5 <0.5 <0.5 NA No Limit Pass To-130% mg/kg 0.5 <0.5	bromodichloromethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	%69	60-140%	Pass
mg/kg 0.5 <0.5 <0.5 NA No Limit Pass To-130% mg/kg 0.5 <0.5	trans-1,3-dichloropropene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	***
mg/kg 0.5 <0.5 NA No Limit Pass <-0.5 Pass 70-130% mg/kg 0.5 <0.5	cis-1, 3-dichloropropene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
mg/kg 0.5 <0.5 NA No Limit Pass < 70-130% mg/kg 0.5 <0.5	1,1,2-trichloroethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
mg/kg 0.5 <0.5 NA No Limit Pass 70-130% mg/kg 0.5 <0.5	Toluene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
mg/kg 0.5 <0.5 NA No Limit Pass 79% 70-130% mg/kg 0.5 <0.5	1, 3-dichloropropane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
Tane mg/kg 0.5 <0.5 <0.5 NA No Limit Pass < 70-130% sne mg/kg 0.5 <0.5	dibromochloromethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	79%	70-130%	Pass
sie mg/Kg 0.5 <0.5 <0.5 NA No Limit Pass <0.5 Pass 86% 70-130% loroethane mg/Kg 0.5 <0.5 NA No Limit Pass <0.5 Pass 70-130% mg/Kg 0.5 <0.5 NA No Limit Pass <0.5 Pass 70-130%	1,2-dibromoethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	
Ioroethane mg/kg 0.5 <0.5 <0.5 NA No Limit Pass < 70-130% mg/kg 0.5 <0.5	tetrachloroethene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	86%	70-130%	Pass
mg/kg 0.5 <0.5 <0.5 NA No Limit Pass <0.5 Pass 70-130%	1,1,1,2-tetrachloroethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	
	chlorobenzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 21 of 36

Ļ
ğ
Report
W
⁶
t
Ż
ō
Ŭ
Ξ
al
Ē
Ā
U
U
ŏ
~

Client Sample ID					BH19 0.2-0.4	2-0.4						
Laboratory Sample Number					GS13482-38	2-38						
QC Parameter					Laboratory Duplicate	uplicate		Metho	Method Blank	Labo	Laboratory Control Standard (LCS)	ard (LCS)
			Original	Duplicate	%RPD	%RPD	Within GSL	Method Blank	Within GSL	LCS (%R)	LCS Acceptance	Within GSL
			Result			Acceptance	Acceptance Criteria		Acceptance		Criteria	Acceptance
						Criteria	(Pass/Fail)		Criteria (<lor) (Pass/Fail)</lor) 			Criteria (Pass/Fail)
VHC	Units	LOR										
Ethylbenzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	Pass
bromoform	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass		70-130%	Pass
m+p-xylene	mg/Kg	1	4	<1	NA	No Limit	Pass	<1	Pass		70-130%	Pass
styrene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	-	70-130%	Pass
1,1,2,2-tetrachloroethane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	Pass
o-Xylene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	-	70-130%	Pass
1,2,3-trichloropropane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	-	70-130%	Pass
isopropylbenzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	Pass
bromobenzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	I	70-130%	Pass
n-propyl benzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	Pass
2-chlorotoluene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	-	70-130%	Pass
4-chlorotoluene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	Pass
1,3,5-trimethyl benzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	l	70-130%	Pass
tert-butyl benzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	Pass
1,2,4-trimethyl benzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	Pass
1,3-dichlorobenzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	I	70-130%	Pass
sec-butyl benzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	I	70-130%	Pass
1,4-dichlorobenzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	Pass
4-isopropyl toluene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	I	70-130%	Pass
1,2-dichlorobenzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	Pass
n-butyl benzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	I	70-130%	Pass
1,2-dibromo-3-chloropropane	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	I	70-130%	Pass
1,2,4-trichlorobenzene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	I	70-130%	Pass
hexachlorobutadiene	mg/Kg	0.5	<0.5	<0.5	NA	No Limit	Pass	<0.5	Pass	1	70-130%	Pass
1 0 0 tricklorobonzono	~ //~	с С	2 U N	с 0 v	ΝΔ	No Limit	Dace	ч С /	Dace	1	70-130%	Pacc

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 22 of 36

		VOC T	echnic	al Holo	ding Ti	me Com	Technical Holding Time Compliance	
Client Sample ID			BH2 0-0.5	ВН2 0-0.5 ВН7 0.4-0.6 ВН17 0.3-0.5 ВН19 0.2-0.4	BH17 0.3-0.5	BH19 0.2-0.4		
Laboratory Sample Number			GS13482-4	GS13482-4 GS13482-15 GS13482-34 GS13482-38	GS13482-34	GS13482-38		
Date Sampled			17/10/2013	17/10/2013 17/10/2013 17/10/2013 17/10/2013	17/10/2013	17/10/2013		
Analyte	THT Parameters	THT (Days)						
	Extraction Date		28/10/2013	28/10/2013 29/10/2013 30/10/2013 31/10/2013	30/10/2013	31/10/2013		
VOC	Analysis Time (Days)	14	11	12	13	14		
	THT Compliant		Yes	Yes	Yes	Yes		

Reference AF55.Rev4 Date Issued : 3/11/2010

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 23 of 36
					PAH	PAH Results	ţS						
Client Sample ID				BH1 0-0.5	BH1 0.5-1.0	BH2 0-0.5	BH3 0-0.5	BH3 0.5-1.0	BH4 0.3-0.5	BH5 0.2-0.4	BH6 0.2-0.4	BH7 0.4-0.6	BH9 0.4-0.6
Laboratory Sample Number			-	GS13482-1	GS13482-2	GS13482-4	GS13482-6	GS13482-7	GS13482-9	GS13482-11	GS13482-13	GS13482-15	GS13482-18
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
ANALYTE	Literature Reference	Units	LOR										
Moisture	NEPC 102	%	0.1	18.0	19.0	28.0	16.0	20.0	17.0	16.0	13.0	19.0	13.0
РАН													
Naphthalene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.1	<0.1	<0.1	<0.1
Acenaphthylene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	0.5	0.4	0.2	0.3
Acenaphthene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.3	0.2	<0.1	<0.1
Phenanthrene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.7	4.2	3.5	1.6	0.8
Anthracene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.6	0.8	0.7	0.3	0.2
Fluoranthene	GSLS	mg/kg	0.1	<0.1	<0.1	0.6	<0.1	<0.1	6.6	6.4	6.7	3.3	2.4
Pyrene	GSLS	mg/kg	0.1	<0.1	<0.1	0.4	<0.1	<0.1	6.5	5.5	5.7	2.6	2.1
Benz(a)anthracene	GSLS	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	<0.1	3.9	3.1	3.5	1.7	1.4
Chrysene	GSLS	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1	3.3	2.4	2.8	1.3	1.1
Benzo(b)&(k)fluoranthene	GSLS	mg/kg	0.2	<0.2	<0.2	0.9	<0.2	<0.2	6.1	4.0	5.2	2.3	2.6
Benzo(a)pyrene	GSLS	mg/kg	0.05	<0.05	<0.05	0.70	<0.05	<0.05	4.90	3.10	3.50	1.75	1.70
Indeno(1,2,3-cd)pyrene	GSLS	mg/kg	0.1	<0.1	<0.1	1.3	<0.1	<0.1	4.6	2.9	3.2	1.8	2.2
Dibenz(a,h)anthracene	GSLS	mg/kg	0.1	<0.1	<0.1	0.8	<0.1	<0.1	1.3	1.1	1.1	0.9	0.9
Benzo(ghi)perylene	GSLS	mg/kg	0.1	<0.1	<0.1	0.9	<0.1	<0.1	4.2	2.5	2.5	1.3	2
Sum of PAH's		mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
B(a)P TEQ		mg/kg	1	<1	<1	1.8	<1	<1	7.7	5.2	5.8	3.3	3.3
Surrogates													
p-terphenyl-d14	GSLS	%	1	101%	106%	95%	97%	106%	92%	96%	103%	99%	92%
					Reference AF56.Rev	Reference AF56.Rev4 Date Issued : 3/11/2010	/11/2010						

Comments : 1. PAH results reported on a dry weight basis

					PAH	PAH Results	ts						
			-	-								-	
Client Sample ID				BH10 0.4-0.5	BH11 0.2-0.4	BH12 0.3-0.5	BH13 0.2-0.4	BH14 0.2-0.3	BH15 0.3-0.5 BH16 0.3-0.5	BH16 0.3-0.5	BH17 0.3-0.5	BH18 0.4-0.5	BH19 0.2-0.4
Laboratory Sample Number				GS13482-20	GS13482-22	GS13482-24	GS13482-26	GS13482-28	GS13482-30	GS13482-32	GS13482-34	GS13482-36	GS13482-38
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
ANALYTE	Literature Reference	Units	LOR										
Moisture	NEPC 102	%	0.1	14.0	23.0	27.0	20.0	21.0	31.0	28.0	19.0	15.0	21.0
РАН													
Naphthalene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	0.4	1.1	<0.1	<0.1	<0.1	0.5	<0.1
Anthracene	GSLS	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	GSLS	mg/kg	0.1	0.4	0.6	0.7	0.9	7	<0.1	<0.1	<0.1	1.2	0.4
Pyrene	GSLS	mg/kg	0.1	0.2	0.3	0.4	0.6	9	<0.1	<0.1	<0.1	0.9	0.2
Benz(a)anthracene	GSLS	mg/kg	0.1	0.3	0.5	0.5	0.6	4.4	<0.1	<0.1	<0.1	0.7	0.3
Chrysene	GSLS	mg/kg	0.1	<0.1	0.1	0.2	0.3	3.6	<0.1	<0.1	<0.1	0.4	<0.1
Benzo(b)&(k)fluoranthene	GSLS	mg/kg	0.2	0.4	0.7	0.8	0.8	7.8	<0.2	0.2	<0.2	0.9	0.4
Benzo(a)pyrene	GSLS	mg/kg	0.05	0.40	0.60	0.60	0.70	5.50	<0.05	<0.05	<0.05	0.70	0.40
Indeno(1,2,3-cd)pyrene	GSLS	mg/kg	0.1	0.5	0.9	0.9	6.0	6.3	<0.1	<0.1	<0.1	1.0	<0.1
Dibenz(a,h)anthracene	GSLS	mg/kg	0.1	0.5	0.8	<0.1	0.7	1.7	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	GSLS	mg/kg	0.1	0.3	0.6	0.6	0.6	5.6	<0.1	<0.1	<0.1	0.6	0.4
Sum of PAH's		mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
B(a)P TEQ		mg/kg	1	1.0	1.6	<1	1.6	9.1	<1	<1	<1	1.0	<1
Surrogates													
p-terphenyl-d14	GSLS	%	1	100%	112%	88%	89%	94%	96%	103%	94%	93%	82%
					Reference AF56.Rev	Reference AF56.Rev4 Date Issued : 3/11/2010	/11/2010						

Groundswell Laboratories Pty Ltd ABN 24133248923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 86691450 Fax (03) 86691451 E-mail : admin@groundswelllabs.com.au Page 25 of 36

					PA	PAH Results	ults							
Client Sample ID				BH20 0.2-0.4	BH20 1.0-1.1	BH20 0.3-0.5	BH22 0.2-0.3	D1	D2	D3	D4		R1	R2
Laboratory Sample Number				GS13482-39	GS13482-40	GS13482-42	GS13482-43	GS13482-44	GS13482-45	GS13482-46	GS13482-47	GS1	GS13482-48	GS13482-49
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/	17/10/2013	17/10/2013
ANALYTE	Literature Reference	Units	LOR											
Moisture	NEPC 102	%	0.1	17.0	19.0	22.0	20.0	12.0	20.0	30.0	24.0			
РАН														
Naphthalene	GSLS	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.5	<0.5
Acenaphthylene	GSLS	mg/kg	0.1	0.2	<0.1	0.3	0.3	0.2	0.5	<0.1	<0.1		<0.5	<0.5
Acenaphthene	GSLS	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	<0.1	<0.1	<0.1	<0.1		<0.5	<0.5
Fluorene	GSLS	mg/kg	0.1	<0.1	<0.1	16.4	<0.1	<0.1	0.1	<0.1	<0.1		<0.5	<0.5
Phenanthrene	GSLS	mg/kg	0.1	4.3	1.0	3.7	0.6	0.6	2.8	<0.1	<0.1		<0.5	<0.5
Anthracene	GSLS	mg/kg	0.1	0.8	0.2	18.3	<0.1	0.1	0.6	<0.1	<0.1		<0.5	<0.5
Fluoranthene	GSLS	mg/kg	0.1	5.7	3.3	14.1	2.1	1.9	5.2	<0.1	0.8		<0.5	<0.5
Pyrene	GSLS	mg/kg	0.1	4.5	2.8	14.1	1.7	1.5	4.7	<0.1	0.5		<0.5	<0.5
Benz(a)anthracene	GSLS	mg/kg	0.1	2.6	1.9	7.4	1.3	1.1	3	<0.1	0.6		<0.5	<0.5
Chrysene	GSLS	mg/kg	0.1	2.1	1.4	6.3	0.9	0.8	2.5	<0.1	0.2		<0.5	<0.5
Benzo(b)&(k)fluoranthene	GSLS	mg/kg	0.2	3.3	3.0	8.6	1.8	1.8	4.8	<0.2	0.8		<0.5	<0.5
Benzo(a)pyrene	GSLS	mg/kg	0.05	2.30	2.15	6.10	1.50	1.30	3.80	<0.05	0.60		<0.5	<0.5
Indeno(1,2,3-cd)pyrene	GSLS	mg/kg	0.1	2.3	2.2	5.4	1.6	1.6	3.6	<0.1	<0.1		<0.5	<0.5
Dibenz(a,h)anthracene	GSLS	mg/kg	0.1	1	1	1.7	0.8	0.8	1.2	<0.1	<0.1		<0.5	<0.5
Benzo(ghi)perylene	GSLS	mg/kg	0.1	1.8	1.7	4.3	1.2	1.3	3.1	<0.1	0.6		<0.5	<0.5
Sum of PAH's		mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1		<4	<4
B(a)P TEQ		mg/kg	1	4.2	3.9	10.0	2.8	2.6	6.2	<1	<1			
Surrogates														
p-terphenyl-d14	GSLS	%	1	%06	88%	97%	86%	91%	85%	85%	110%		92%	95%
					Reference AF	Reference AF56.Rev4 Date Issued : 3/11/2010	ed: 3/11/2010							

Comments : 1. Samples R1 & R2 are water samples, with results expressed in µg/L

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 26 of 36

Report
Control
Quality
PAH

$\begin the laboratory Sample Number \end to laboratory Duplicate to the laboratory Duplicate strate strat$	Client Sample ID				Ш	BH10 0.4-0.5	'n				BH20 1.0-1.1	-1.1	
Image: I	Laboratory Sample Number					5S13482-2	0				GS13482	-40	
Criginal Duplicate %RPD %RPD Within GSL Original Duplicate %RPD	QC Parameter				Labo	ratory Dup	olicate			La	boratory D	uplicate	
Result Result Acceptance Result Acceptance Result Comparison				Original	Duplicate	%RPD	%RPD	Within GSL	Original	Duplicate	%RPD	%RPD	Within GSL
Image Cutatria Criteria mg/kg 0.1 0.1 0.1 0.1 N N N N N N N <td< th=""><th></th><th></th><th></th><th>Result</th><th></th><th></th><th>Acceptanc</th><th>Acceptance</th><th>Result</th><th></th><th></th><th>Acceptance</th><th>Acceptance</th></td<>				Result			Acceptanc	Acceptance	Result			Acceptance	Acceptance
Units LOR (Pass/Fail) Units LOR < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>e Criteria</th> <th>Criteria</th> <th></th> <th></th> <th></th> <th>Criteria</th> <th>Criteria</th>							e Criteria	Criteria				Criteria	Criteria
Units Lor Lor Col Col NA No Limit Pass Col Pass Col NA No Limit Pass Col NA No Limit Pass Col Pass Pass Pass Pass Pass Pass Pass Pass Pass								(Pass/Fail)					(Pass/Fail)
mg/kg 0.1 <0.1	РАН	Units	LOR										
mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 NA No Limit Pass <0.1 0.3 NA No Limit mg/kg 0.1 <0.1	Naphthalene	mg/kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	<0.1	NA	No Limit	Pass
mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 NA No Limit Pass <0.1 <0.1 NA No Limit mg/kg 0.1 <0.1	Acenaphthylene	mg/kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	0.3	NA	No Limit	Pass
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acenaphthene	mg/kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	<0.1	NA	No Limit	Pass
mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 No Limit Pass 1.0 0.9 10% No Limit mg/kg 0.1 <0.1	Fluorene	mg/kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	<0.1	NA	No Limit	Pass
mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 NA No Limit Pass 0.2 <0.1 NA No Limit mg/kg 0.1 0.4 0.3 29% No Limit Pass 3.3 2.7 20% ≤30% mg/kg 0.1 0.2 <0.1	Phenanthrene	mg/kg	0.1	<0.1	<0.1	NA	No Limit	Pass	1.0	0.9	10%	No Limit	Pass
mg/kg 0.1 0.4 0.3 29% No Limit Pass 3.3 2.7 20% s30% mg/kg 0.1 0.2 <0.1	Anthracene	mg/kg	0.1	<0.1	<0.1	NA	No Limit	Pass	0.2	<0.1	NA	No Limit	Pass
mg/kg 0.1 0.2 <0.1 NA No Limit Pass 2.8 2.2 24% ≤30% mg/kg 0.1 0.3 0.3 <0.1%	Fluoranthene	mg/kg	0.1	0.4	0.3	29%	No Limit	Pass	3.3	2.7	20%	≤30%	Pass
mg/kg 0.1 0.3 0.3 <0.1% No Limit Pass 1.9 1.5 23% No Limit mg/kg 0.1 <0.1	Pyrene	mg/kg	0.1	0.2	<0.1	NA	No Limit	Pass	2.8	2.2	24%	≤30%	Pass
mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 Solution <	Benz(a)anthracene	mg/kg	0.1	0.3	0.3	<0.1%	No Limit	Pass	1.9	1.5	23%	No Limit	Pass
ne mg/kg 0.2 0.4 0.3 <1% No Limit Pass 2.2 1.6 32% No Limit mg/kg 0.05 0.40 0.30 29% No Limit Pass 2.15 1.6 32% No Limit mg/kg 0.1 0.5 0.30 29% No Limit Pass 2.15 1.6 28% No Limit mg/kg 0.1 0.5 0.5 <1%	Chrysene	mg/kg	0.1	<0.1	<0.1	NA	No Limit	Pass	1.4	1.1	25%	No Limit	Pass
mg/kg 0.05 0.40 0.30 29% No Limit Pass 2.15 1.6 28% No Limit mg/kg 0.1 0.5 0.5 41% No Limit Pass 2.2 1.7 30% No Limit mg/kg 0.1 0.5 0.3 50% No Limit Pass 1.7 30% No Limit mg/kg 0.1 0.3 50% No Limit Pass 1.0 0.9 10% No Limit mg/kg 0.1 0.3 0.3 <1%	Benzo(b)&(k)fluoranthene	mg/kg	0.2	0.4	0.3	<1%	No Limit	Pass	2.2	1.6	32%	No Limit	Pass
mg/kg 0.1 0.5 0.5 <1% No Limit Pass 2.2 1.7 30% No Limit mg/kg 0.1 0.5 0.3 50% No Limit Pass 1.0 0.9 10% No Limit mg/kg 0.1 0.3 50% No Limit Pass 1.0 0.9 10% No Limit mg/kg 0.1 0.3 0.3 <1%	Benzo(a)pyrene	mg/kg	0.05	0.40	0.30	29%	No Limit	Pass	2.15	1.6	28%	No Limit	Pass
"acene mg/kg 0.1 0.5 0.3 50% No Limit Pass 1.0 0.9 10% No Limit ine mg/kg 0.1 0.3 51% No Limit Pass 1.7 1.3 27% No Limit ine 1 10 0.3 <1%	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	0.5	<1%	No Limit	Pass	2.2	1.7	30%	No Limit	Pass
ne mg/kg 0.1 0.3 0.3 <1% No Limit Pass 1.7 1.3 27% No Limit I	Dibenz(a,h)anthracene	mg/kg	0.1	0.5	0.3	50%	No Limit	Pass	1.0	0.9	10%	No Limit	Pass
% 1 100% 95% 88% 91%	Benzo(ghi)perylene	mg/kg	0.1	0.3	0.3	<1%	No Limit	Pass	1.7	1.3	27%	No Limit	Pass
88% 91% 88% 91%	Surrogates												
	p-terphenyl-d14	%	1	100%	95%		-		88%	91%		1	-

Comments : 1. NA = Not Applicable

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 27 of 36

Report
Control
Quality
PAH

Client Sample ID							
Laboratory Sample Number							
QC Parameter			Met	Method Blank	Laborat	Laboratory Control Standard (LCS)	ndard (LCS)
		•	Method	Within GSL	LCS (%R)	LCS	Within GSL
			Blank	Acceptance		Acceptance	Acceptance
				Criteria (<lor) (Pass/Fail)</lor) 		Criteria	Criteria (Pass/Fail)
РАН	Units	LOR					
Naphthalene	mg/kg	0.1	<0.1	Pass	107%	70-130%	Pass
Acenaphthylene	mg/kg	0.1	<0.1	Pass	-	70-130%	
Acenaphthene	mg/kg	0.1	<0.1	Pass	1	70-130%	
Fluorene	mg/kg	0.1	<0.1	Pass	108%	70-130%	Pass
Phenanthrene	mg/kg	0.1	<0.1	Pass	104%	70-130%	Pass
Anthracene	mg/kg	0.1	<0.1	Pass	1	70-130%	1
Fluoranthene	mg/kg	0.1	<0.1	Pass	112%	70-130%	Pass
Pyrene	mg/kg	0.1	<0.1	Pass	100%	70-130%	Pass
Benz(a)anthracene	mg/kg	0.1	<0.1	Pass	1	70-130%	1
Chrysene	mg/kg	0.1	<0.1	Pass	107%	70-130%	Pass
Benzo(b)&(k)fluoranthene	mg/kg	0.2	<0.2	Pass	1	70-130%	
Benzo(a)pyrene	mg/kg	0.05	<0.05	Pass	108%	70-130%	Pass
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	Pass	1	70-130%	1
Dibenz(a,h)anthracene	mg/kg	0.1	<0.1	Pass	1	70-130%	1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	Pass	-	70-130%	
Surrogates							
p-terphenyl-d14	%	1	93%	-	126%	1	I
				0000/00/00/00			

Reference AF56.Rev4 Date Issued : 3/11/2010

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 28 of 36

		- HAH	Technic	echnical Holding Time Compliance	ng Tim	ie Com	pliance		
Client Sample ID			All Samples						
Laboratory Sample Number			All Samples						
Date Sampled			17/10/2013						
Analyte	THT Parameters	THT (Days)							
	Extraction Date		28/10/2013						
РАН	Analysis Time (Days)	14	11						
	THT Compliant		Yes						

Reference AF56.Rev4 Date Issued : 3/11/2010

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 29 of 36

					Pheno	Phenol Results	lts						
Client Sample ID				BH7 0.4-0.6	BH9 0.4-0.6	BH11 0.2-0.4	BH15 0.3-0.5	BH17 0.3-0.5	BH19 0.2-0.4	D1	D3	D4	
Laboratory Sample Number				GS13482-15	GS13482-18	GS13482-22	GS13482-30	GS13482-34	GS13482-38	GS13482-44	GS13482-46	GS13482-47	
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	
Analytes	Literature Reference	Units	LOR										
Moisture	NEPC 102	%	0.1	19.0	13.0	23.0	31.0	19.0	21.0	12.0	30.0	24.0	
Phenols													
Phenol	550.2	mg/Kg	1	<1	4	<1	-1	<1	<1	-1	<1	<1	
2-Chlorophenol	550.2	mg/Kg	1	<1	$\stackrel{<}{\sim}1$	<1	4	4	4	<1	<1	<1	
2-Methylphenol	550.2	mg/Kg	1	<1	4	<1	41	<1	<1	<1	<1	<1	
3 & 4-Methylphenol	550.2	mg/Kg	2	<2	\$	<2	⊲2	<2	<2	<2	<2	<2	
2-Nitrophenol	550.2	mg/Kg	1	<1	4	<1	4	4	4	<1	<1	<1	
2,4-Dimethylphenol	550.2	mg/Kg	1	<1	4	<1	4	4	4	<1	<1	4	
2,4-Dichlorophenol	550.2	mg/Kg	1	<1	4	<1	4	4	4	4	<1	<1	
2,6-Dichlorophenol	550.2	mg/Kg	1	<1	4	<1	4	√1	√1	41	<1	<1	
2,4,6-Trichlorophenol	550.2	mg/Kg	1	<1	4	<1	4	√1	√1	<1	<1	<1	
2,4,5-Trichlorophenol	550.2	mg/Kg	1	<1	4	<1	4	41	41	<1	<1	4	
2,4-Dinitrophenol	550.2	mg/Kg	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
4-Nitrophenol	550.2	mg/Kg	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
2,3,4,6-Tetrachlorophenol	550.2	mg/Kg	1	<1	4	<1	41	<1	<1	<1	<1	4	
2-methyl-4,6-dinitrophenol	550.2	mg/Kg	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Pentachlorophenol	550.2	mg/Kg	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Sum of Halogenated Phenols		mg/Kg	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	
Sum of Non-Halogenated Phenols		mg/Kg	15	<15	<15	<15	<15	<15	<15	<15	<15	<15	
Surrogates													
Phenol-d6	550.2	%	1	101%	%66		92%	91%	75%	95%	84%	117%	
					Reference AF55.Rev4	4 Date Issued : 3/11/2010	1/2010						

Comments :

1- Phenol results reported on a dry weight basis

Report
Control
Quality
Phenols

Client Sample ID							
Laboratory Sample Number							
QC Parameter			Metho	Method Blank	Laborato	Laboratory Control Standard (LCS)	dard (LCS)
			Method Blank	Within GSL	LCS (%R)	LCS	Within GSL
				Acceptance		Acceptance	Acceptance
				Criteria (<lor) (Pace/Fail)</lor) 		Criteria	Criteria (Pacs/Fail)
Dhenols	llnitc	aO		fun i foon il			lun from d
Phenol	mg/Kg	1	1>	Pass	6%	70-130%	Pass
2-Chlorophenol	mg/Kg	Ч	$\stackrel{<}{\sim}$	Pass	110%	70-130%	Pass
2-Methylphenol	mg/Kg	1	<1	Pass		70-130%	
3 & 4-Methylphenol	mg/Kg	2	<2	Pass		70-130%	-
2-Nitrophenol	mg/Kg	1	<1	Pass		70-130%	1
2,4-Dimethylphenol	mg/Kg	1	<1	Pass		70-130%	1
2,4-Dichlorophenol	mg/Kg	1	<1	Pass		70-130%	1
2,6-Dichlorophenol	mg/Kg	1	<1	Pass		70-130%	1
2,4,6-Trichlorophenol	mg/Kg	1	<1	Pass	-	70-130%	
2,4,5-Trichlorophenol	mg/Kg	1	<1	Pass	-	70-130%	
2,4-Dinitrophenol	mg/Kg	10	<10	Pass	-	70-130%	
4-Nitrophenol	mg/Kg	10	<10	Pass	130%	70-130%	Pass
2, 3, 4, 6-Tetrachlorophenol	mg/Kg	1	<1	Pass	1	70-130%	1
2-methyl-4,6-dinitrophenol	mg/Kg	10	<10	Pass	1	70-130%	1
Pentachlorophenol	mg/Kg	10	<10	Pass	1	70-130%	1
Surrogates							
2-Fluorophenol	%	1	83%		132%	1	

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 31 of 36

		Phenol	Techn	ical Hol	ding T	I Technical Holding Time Compliance	pliance		
Client Sample ID			All Samples						
Laboratory Sample Number			All Samples						
Date Sampled			17/10/2013						
Analyte	THT Parameters	THT (Days)							
	Extraction Date		28/10/2013						
Phenols	Analysis Time (Days)	14	11						
	THT Compliant		Yes						

Reference AF55.Rev4 Date Issued : 3/11/2010

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 32 of 36

				Ō	OCP & PI	& PCB Results	ults						
Client Sample ID				BH3 0-0.5	BH4 0.3-0.5	BH5 0.2-0.4	BH6 0.2-0.4	BH7 0.4-0.6	BH8 0.1-0.3	BH9 0.4-0.6		BH11 0.2-0.4 BH12 0.3-0.5 BH15 0.3-0.5	BH15 0.3-0.5
Laboratory Sample Number				GS13482-6	GS13482-9	GS13482-11	GS13482-13	GS13482-15	GS13482-17	GS13482-18		GS13482-24	GS13482-30
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
Analytes	Literature Reference	Units	LOR										
Moisture	NEPC 102	%	0.1	16.0	17.0	16.0	13.0	19.0	9.4	13.0	23.0	27.0	31.0
OCP													
Hexachlorobutadiene	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha-BHC	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Gamma-BHC	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta-BHC	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta-BHC	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-Chlordane	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan-I	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan-II	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulfate	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB													
Arochlor 1016	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
OCP Surrogates													
TCMX	GSLS	%	1	68%	%69	76%	82%	81%	73%	75%	%06	72%	75%
PCB Surrogate													
TCMX	GSLS	%	1	68%	67%	72%	77%	73%	68%	69%	83%	67%	69%
					Reference AF55.Rev4 Date Issued : 3/11/2010	Date Issued : 3/11	/2010						

Comments : 1- OCP & PCB results reported on a dry weight basis

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 33 of 36

				Ō	OCP & PCB		Results						
Client Sample ID				BH17 0.3-0.5	BH19 0.2-0.4	BH20 0.2-0.4	BH20 1.0-1.1	BH20 0.3-0.5	BH22 0.2-0.3	D1	D2	B3	D4
Laboratory Sample Number				GS13482-34	GS13482-38			GS13482-42		GS13482-44	GS13482-45	GS13482-46	GS13482-47
Date Sampled				17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013	17/10/2013
Analytes	Literature Reference	Units	LOR										
Moisture	NEPC 102	%	0.1	19.0	21.0	17.0	19.0	22.0	20.0	12.0	20.0	30.0	24.0
OCP													
Hexachlorobutadiene	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha-BHC	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Gamma-BHC	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta-BHC	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta-BHC	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-Chlordane	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan-I	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan-II	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulfate	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB													
Arochlor 1016	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	GSLS	mg/Kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
OCP Surrogates													
TCMX	GSLS	%	1	73%	74%	74%	72%	79%	72%	74%	71%	65%	%06
PCB Surrogate													
TCMX	GSLS	%	1	%69	60%	68%	64%	72%	63%	67%	64%	80%	83%
					Reference AF55.Rev4 Date Issued : 3/11/2010	Date Issued : 3/11	/2010						

Groundswell Laboratories Pty Ltd ABN 24 133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 34 of 36 **OCP & PCB Quality Control Report**

Client Sample ID					BH20 1.0-1.1	1						
Laboratory Sample Number					GS13482-40	6						
QC Parameter				lal	Laboratory Duplicate	licate		Metho	Method Blank	Laborato	Laboratory Control Standard (LCS)	dard (LCS)
			Original	Duplicate	%RPD	%RPD	Within GSL	Method Blank	Within GSL	LCS (%R)	LCS	Within GSL
			Result			Acceptance	Acceptance		Acceptance		Acceptance	Acceptance
						Criteria	Criteria (Dace/Eail)		Criteria (<lor) (Dace/Eail)</lor) 		Criteria	Criteria (Dass/Eail)
0CP	Units	LOR										
Hevachlorohistadiana	ma/ka	10	< U 1	<01	MA	No Limit	Dacc	<01	Dace	:	70-130%	
	ma/ka	1.0	1.0/	1.0/		No Limit	Dacc	1.0/	Dace	700	70-130%	Dace
Gamma-BHC	ma/ka	1.0	1.02	1.02		No Limit	Dacc	1.02	Dacc	0/00	70-130%	T 433
Beta-BHC	a'i /a''' ma/ka	1.0	1.02	107	N N	No Limit	Dacc	102	Dace	08%	70-130%	Dace
Heptachlor	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	91%	70-130%	Pass
Delta-BHC	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	ł	70-130%	1
Aldrin	mg/Kg	0.1	<0.1	<0.1	AN	No Limit	Pass	<0.1	Pass		70-130%	
Heptachlor epoxide	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	-	70-130%	
gamma-Chlordane	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass		70-130%	-
al pha-Chlordane	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	1	70-130%	
Endosulfan-I	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	1	70-130%	-
pp-DDE	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	93%	70-130%	Pass
Dieldrin	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	121%	70-130%	Pass
Endrin	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	118%	70-130%	Pass
pp-DDD	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	97%	70-130%	Pass
Endosulfan-II	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	1	70-130%	
pp-DDT	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	1	70-130%	
Endrin aldehyde	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	1	70-130%	
Endosulfan Sulfate	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	70%	70-130%	Pass
Methoxychlor	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass		70-130%	
PCB												
Arochlor 1016	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	1	70-130%	
Arochlor 1221	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	1	70-130%	
Arochlor 1232	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	1	70-130%	
Arochlor 1242	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	-	70-130%	
Arochlor 1248	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	1	70-130%	
Arochlor 1254	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass	102%	70-130%	Pass
Arochlor 1260	mg/Kg	0.1	<0.1	<0.1	NA	No Limit	Pass	<0.1	Pass		70-130%	

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 35 of 36

Reference AF55.Rev4 Date Issued : 3/11/2010

	00	OCP & PC	B Tech	PCB Technical Holding Time Compliance	
,					
Client Sample ID			All Samples		
Laboratory Sample Number			All Samples		
Date Sampled			17/10/2013		
Analyte	THT Parameters	THT (Days)			
	Extraction Date		28/10/2013		
OCP	Analysis Time (Days)	14	11		
	THT Compliant		Yes		
	Extraction Date		28/10/2013		
PCB	Analysis Time (Days)	14	11		
	THT Compliant		Yes		

Reference AF55.Rev4 Date Issued : 3/11/2010

Groundswell Laboratories Pty Ltd ABN 24133 248 923 116 Moray Street, South Melbourne, Victoria, 3205 Ph (03) 8669 1450 Fax (03) 8669 1451 E-mail : admin@groundswelllabs.com.au Page 36 of 36

Groundswell Laboratories

 116 Moray Street, South Melbourne, Victoria, 3205.

 Ph (03) 8669 1450
 Fax (03) 8669 1451
 (M) 0416 203 845
 e-mail : admin@groundswelllabs.com.au

Sample Receipt Notice

Client Name Client Project Manager Client e-mail Client Address Client Phone	Aargus Mark Kelly <u>mark.kelly@aargus.net</u> 446 Parramatta Road, Petersham, NSW, 2049 1300 137 038
Project Name Project Number CofC Serial Number Purchase Order Number	Marrickville ES5611-2 Not Applicable Not Applicable
Date Sampled / Sampling Period Date Samples Received Date Sample Receipt Notice Issued Date Analytical Report Due	17/10/2013 21/10/2013 22/10/2013 30/10/2013
Groundswell Batch Number Groundswell Quote Number Groundswell Sample Receipt Contact E-mail Groundswell Reporting Contact E-mail	GS13482 Not Applicable Chris De Luca <u>chris@groundswelllabs.com.au</u> Paul Woodward <u>paul@groundswelllabs.com.au</u>
Reporting Requirements	pdf, xlsx
Sample Condition	Samples chilled when received COC received with samples & samples detailed on the COC match those received Analytical request on the CofC clear Samples were received in appropriate containers, and appropriately preserved Samples were received within the THT's adopted by Groundswell
Comments	
Subcontracted Analysis	Asbestos samples sent to LRM Global on the 22/10/2013 A range of organics sent to Envirolab on the 22/10/2013
Secondary Laboratory Analysis	

Secondary Laboratory Analysis

Thanks for choosing Groundswell Laboratories

Reference : AF10.Rev1 Date Issued : 10/08/2010

a land of the state of the state of the				minuted soil comple (small plastic bag)	anto Ismall	- I wall one									Legend:
@ mole H*/tonne				1000	1		1000 March	V MORDING	in	-	18.10.2013	SW		Michael Silk	
	10/13	1 24		all all		a	INGINE		-		Date	Signature	troublines t	Name	
			au	Signature	-	D	Nom					ed by	linouis		
Date		1 DY	Received by						-		~	DSG			
			1 1					-			~	DSG	0.2-0.4	BH6	
YES					<	<	~	~				DSG	0.8-1.0	BH5	
YES	~	~									5	DSG		BH5	
TES						<	~	<			2	Dog			
	×	X			~		-				×				
-								-		2	~	980			11
YES					~	~	<	4			<	DSG			A LA
YES	X	~										DSG	0.5-1.0	BH3	
YES							~	~				DSG	0-0.5 D	BH3	
YES						<	~	~			1	DOG	1-1-0	BHZ	
YES	~	~			-							DSG	0.5-1.0 0		
YES											~	Dag		BH2	
100							<	<			~	Dag			
V TEO	<	~	+								~	Dog			
1								<			~	00			
YES							<				~	DSG	0-0.5 D	RH1	
YES	~	~			1		×	Y BTEX	-	100 M	Pb, Hg, Ni and Zn				
	of	PRESENCE	Cyanide	Phenois	РСВ	OCP	PAH	s and	I CEC &	Cr III	Heavy Metals				
VOC SAMPLE	U.					-	-					-	(m)		
KE						THE REAL PROPERTY.						Soil Water	Depth S		Lo
			MINU	Results required by: STANDAND	red by:	's requi	Result					Sample type	S	Sampling details	and the second second
			ARD	CTAND									FAX:	03 8669 1450	PH: 03 8 ATTN:
			TATION IN MUTAL	Location.		MK	Project Manager:	Project							
		ILLE	MAPPICKVILLE				- 1	-					3205	SOUTH MELBOURNE VIC 3205	sou
			The second second	Flujeco		MS	d By:	Sampled By:						116 MORAY STREET	116
		LLE	MARRICKVILLE	Droinct:									TORIES	GROUNDSWELL LABORATORIES	TO: GRO
			ES5611-2	Job No:	.2013	16-17.10.2013	gus.net Sampling Date:	aargus.net	& michael@	aargus.net	email: admin@aargus.net & michael@aargus.net	NSW 1470	OYNE	2049	Ra
of 5		-1	Page)38 038	Tel: 1300 137 038 Fax: 1300 136 038	Tel:	80F 208		:	5
a	ody Record	Laboratory Test Request / Chain of Custody Record	uest / Chi	est Requ	ratory T	Labo								AARGUS PTY LTD	AARGU

Grandshell Barba: GS13482.

Tel: 1300 197 038 Fax: 1300 197 038 Sampling bate: 16-17.10.2013 Joh No: ES6 Sampling data For the original system For the original system <th co<="" th=""><th>Disturbed soil sample (small plastic bag)</th></th>	<th>Disturbed soil sample (small plastic bag)</th>	Disturbed soil sample (small plastic bag)
Tel: 1300 137 038 Fax: 1300 137 038 Tel: 1300 137 038 Fax: 1300 137 038 Fax: 1300 137 038 Fax: 1300 136 039 Fax: 1300 136 039 Sampling details Sample type Sampling details DRUMMOYNE NSW 1470 email: admin@aargus.net & michae@aargus.net & michae@aargus.net Sample type S	1	
Tel: 1300 137 038 Fax: 1300 137 038 Tel: 1300 137 038 Fax: 1300 136 039 Fax: 1300 137 038 Fax: 1300 136 039 Fax: 1300 136 039 Sampling details Sample type Sample t		
Tel: 1300 137 038 Fax: 1300 137 038 Tel: 1300 137 038 Fax: 1300 136 039 SHAM NSW 2049 DRUMMOVNE NSW 1470 email: admin@aargus.net & michaael@aargus.net Sampling details Sample type SourrH MELBOURNE VIC 3205 Project Sampling details Sample type Location Depth Sourr Heavy Metals cr III ccc & and bits BH13 0.2-0.4 DSG	-	
rramatta Road (SHAM_NSW_2009) PO Box 398 (DRUMOVNE_NSW_1470) Tel: 1300 137 038 (Fax: 1300 136 038) Tel: 1300 137 038 (Fax: 1300 136 038) GROUNDSWELL LABORATORIES email: admin@aargus.net & michael@aargus.net & michael@a		
rramatta Road (SHAM_NSW_2049) P O Box 398 DRUMMOVNE_NSW_1470 Tel: 1300 137 038 Fax: 1300 136 038 Fax: 1300 136 038 Tel: 1300 137 038 Fax: 1300 136 038 116 MORAY STREET SOUTH MELBOURNE VIC 3205 FAX: email: admin@aargus.net & michael@aargus.net	<	
rramata Road P O Box 398 Tel: 1300 137 038 Fax: 1300 137 038 Tel: 1300 137 038 Fax: 1300 136 038 GROUNDSWELL LABORATORIES Itel MORAY STREET Samplin @aargus.net & michaael@aargus.net & michaeel@aargus.net & mi		
rramatta Road P O Box 388 Tel: 1300 137 038 Fax: 1300 136 038 Tel: 1300 137 038 Fax: 1300 136 038 Sampling 6038 Sampling 60		
Tramatta Road P O Box 388 Tel: 1300 137 038 Fax: 1300 136 038 Tel: 1300 137 038 Sample 030 136 038 Sampling 030 136 038 Project Project Project Project Project Project Sampling 030 136 038 Sampling 030 136 038 Sampling 030 136 038 Project Project </td <td></td>		
Tel: 1300 137 038 Fax: 1300 137 038 Tel: 1300 137 038 Fax: 1300 136 038 SHAM NSW 2049 GROUNDSWELL LABORATORIES I16 MORAY STREET SOUTH MELBOURNE VIC 3205 FAX: Sampling details Cample type Location Depth Soil Water Meavy Metals Cr. III CEC & and N. Clay PH, BH13 D12-0.4 BH13 0.2-0.3 DSG - - BH14 0.2-0.3 DSG - - -		
rramatta Road P O Box 398 Tel: 1300 137 038 Fax: 1300 136 038 Fax: 1300 136 038 Sample SHAM NSW 2049 DRUMMOYNE NSW 1470 email: admin@aargus.net & michael@aargus.net Samplin GROUNDSWELL LABORATORIES FAX: sample Sample SOUTH MELBOURNE VIC 3205 FAX: FAX: project Sampling details Depth Soli Water pH, ervy Metals pH, ervy Metals Location (m) Heavy Metals Cr. III CEC & and BTEX BH13 0.2-0.4 DSG V		
Tramatta Road P O Box 398 Tel: 1300 137 038 Tel: 1300 137 038 SHAM NSW 2049 DRUMMOYNE NSW 1470 email: admin@aargus.net & michael@aargus.net Samplin GROUNDSWELL LABORATORIES 116 MORAY STREET Samplin Samplin SOUTH MELBOURNE VIC 3205 FAX: Project Project 03 8669 1450 FAX: Sampler Project Sampling details Depth Soli Water Ph, Havy Metals Cr. III CEC & and BTPH, Si Clay TPH Location (m) Heavy Metals Cr. III CEC & BTPH, Si Clay BTEX BH13 0.2-0.4 DSG V V V V V		
Tel: 1300 137 038 Fax: 1300 137 038 Tel: 1300 137 038 Fax: 1300 136 038 SynAM NSW 2049 DRUMMOYNE NSW 1470 email: admin@aargus.net & michael@aargus.net & mic		
Tramatta Road P O Box 398 Tel: 1300 137 038 Tel: 1300 137 038 Fax: 1300 136 038 Samplin SHAM NSW 2049 DRUMMOYNE NSW 1470 email: admin@aargus.net & michael@aargus.net & michael		
Tramatta Road P O Box 398 Tel: 1300 137 038 Tel: 1300 137 038 Fax: 1300 136 038 Samplin SHAM NSW 2049 DRUMMOYNE NSW 1470 email: admin@aargus.net & michael@aargus.net & michael		
rramatta Road P O Box 398 Fax: 1300 137 038 Fax: 1300 137 038 Fax: 1300 136 038 Fax: 1300 136 038 Fax: 1300 136 038 Sampling details P O Box 398 Fax: 1300 136 038 Sample Sample Sample type Location Depth Soll Water Project	PCB	
Tamatta Road P O Box 398 Tel: 1300 137 038 SHAM NSW 2049 DRUMMOYNE NSW 1470 email: admin@aargus.net & michael@aargus.net GROUNDSWELL LABORATORIES 116 MORAY STREET Samplin SOUTH MELBOURNE VIC 3205 FAX: Project 03 8669 1450 FAX: Sample type		
rramatta Road P O Box 398 Tel: 1300 137 038 Fax: 1300 136 038 Fax: 1300 136 038 GROUNDSWELL LABORATORIES Solution Streef Solution Streef Solution Streef Solution Fax: 1300 136 038 Samples Solution Methods and Samples So	ulled by.	
Parramatta Road P O Box 398 ERSHAM NSW 2049 DRUMMOVNE NSW 1470 email: admin@aargus.net & michael@aargus.net & michael@aargus.net GROUNDSWELL LABORATORIES Sampled By: 116 MORAY STREET SOUTH MELBOURNE VIC 3205 Project Manager:	uirod hv:	
Parramatta Road P O Box 398 Fax: 1300 137 038 FRSHAM NSW 2049 DRUMMOYNE NSW 1470 email: admin@aargus.net & michael@aargus.net GROUNDSWELL LABORATORIES Sampled By:		
Tel: 1300 137 038 P O Box 398 Fax: 1300 136 038 P O Box 398 Fax: 1300 136 038 Sampling Date:	Project:	
	16-17.10.2013 Job No:	

Michael Silk Legend: W/C Water sample, class bottle	Name		R2	R1			Location	5	116 MORAY STREET SOUTH MELBOURNE VIC 3205	TO: GROUNDSWELL LABORATORIES	446 Parramatta Road PETERSHAM NSW 2049		AARGUS PTY LTD
bottle		1				And A	Depth	8	VIC 3205	ORATORIES	DRUMMOY		D
USG Undistu	Signature			WG/WF			Soil Water	Sample type	FAX:		P O Box 398 DRUMMOYNE NSW 1470		
Undisturbed soil sample (glass jar)	Date 18.10.2013			~	Pb, Hg, Ni and Zn	Heavy Metals As, Cd, Cr, Cu,					email: admin@aargus.net & michael@aargus.net Sampi	Tel: 1	
					T	CrIII					argus.net & m	Tel: 1300 137 038	
	fat the				% Clay	CEC &	PL			10	ichael@aargu		
DSP	partient			~	V	and	ТРН		Project Manager:	Sampled By:	Sampling Date:		
Disturbed soil Test required		Name		<	×	PAH		Result	nager: N	MS MS			
Disturbed soil sample (small plastic bag) Test required						OCP		s requi	MK	S	16-17.10.2013		Labor
e (small pla	A					PCB		red by	-	P			ratory
rstic bag)	St lill	Signalure				Priorio		Results required by: STANDARD	Location: MARRICKVILLE	Project:	Job No:		Fest Re
	1				1	Cyanac	Cumida	DARD	MARRICK	MARRICKVILLE	ES5611-2	Page	quest /
		Received by				No. of Contraction	ASBESTOS		VILLE	VILLE	1	G	Chain of Cu
		Sitetz					ABESTOS						Laboratory Test Request / Chain of Custody Record
	@ mole H*/tonne	Date										of	īd
		-			YES	YES	SAMPLE	Sec.				5	

P

AARGUS PTY LTD

Laboratory Test Request / Chain of Custody Record

TO: GROUNDSWELL LABORATORIES	ABORATORIES	DRUMMOYNE NSW 1470 TORIES	email: admine	email: admin@aargus.net & michael@aargus.net ISam	argus.net Sampling Date:	to Date:	16.17 10 2013	lob No.		4		of	
116 MORAY STREET SOUTH MELBOURNE VIC 3205	ET NE VIC 3205				Sampled By:	d By:	SIN2.01.01	Project:	MARRICKVILLE	VILLE			
03 8669 1450		EAV.											
					Project	Project Manager:	MK	Locatio	Location: MARRICKVILLE	VILLE			
Sampling details	tails	Sample type											
Location	Depth	Soil Water		the second s	R	esults r	Results required by: STANDAPD	" STAND	APD				
	(m)												
			Heavy Metals As, Cd, Cr, Cu, Pb. Ho, Ni and Zn	Cr III CEC &	TPH and Brev	РАН	OCP P	PCB Phenols	Is Cyanide	ASBESTOS PRESENCE	ABESTOS %	voc	KEEP
BH18	0.4-0.5	DSG	1	20.0	t	~				6			
BH18	0.7-0.8	DSG	~							>	>		YES
BH19	0.2-0.4	DSG	~		1	/	-						YES
BH20	0.2-0.4	DSG	~				>	>	>	>	>	>	YES
BH20	1.0-1.1	DSG	~				~			~	>		YES
BH20	2.4-2.5	DSG	~										YES
BH21	0.3-0.5	DSG	>		~	~	1						YES
BH22	0.2-0.3	DSG	/				-			>	>		YES
D1	•	DSG	>					~	-	>	>		YES
D2		DSG	^					>	>				YES
D3		DSG	1		>	.>		1. 1.					YES
D4		DSG	1		>	. >	-		>				YES
	Reling	Relinquished by						>	>				YES
Name		Signature	Date	1 I V	-	Namo	-	Charles	Received by	l by			
Michael Silk	~	MS	18.10.2013	14 M Dedue		OHIDAT		Signature	NG /		11	Date	
Legend:				WARA MA DA.				and the			24/1c/c3		
Water sample, glass bottle Water sample, plastic bottle	bottle : bottle	USG Undisturb DSG Disturbed	Undisturbed soil sample (glass jar) Disturbed soil sample (dass jac)		DSP	Disturbed soil	Disturbed soil sample (small plastic bag)	Il plastic bag)			. ,	@ mole H'/tonne	

which have been as

AARGUS PTY LTD

Laboratory Test Request / Chain of Custody Record

Image: control of the control of control of the control of the control of the control of	446 PETI	446 Parramatta Road PETERSHAM NSW 2049 DRUMM TO: GEOLINICSWELL 1 APPEATORIES	P O Box 398 DRUMMOYNE NSW 1470	P O	P O Box 398 NSW 1470	Tel: 1300 137 038 Fax: 1300 136 038 email: admin@aargus.net & michael@aargus.net	Tel: 1300 137 038 Fax: 1300 136 038 iin@aargus.net & m	8 88 michael@aa	irgus.net		10 of 51 of			Page	2		of	5
SOUTH RELEDURE VICE 300 SOUTH RELEDURE VICE 300 0.0869 1430 FXX Project Manager: MX Location: MARRICK/LLE 0.0869 1430 FXX Project Manager: MX Location: MARRICK/LLE 3370/INITY details Sample ype FXX Project Manager: MX Location: MARRICK/LLE 100 100 Sample ype FXX Project Manager: MX Location: MARRICK/LLE 100 Sample ype FXX Project Manager: MX Location: MARRICK/LLE 100 Sample ype Project Manager: MX Location: MARRICK/LLE 100 Sample ype Project Manager: MX Location: MARRICK/LLE 101 Sample ype Project Manager: MX Results required by: STANDARD 111 Sample ype Project Manager: MX Control Project Manager: MX 111 0.14.05 DSS Project Manager: MX Control Project Manager: MX 111 0.14.05 DSS Project Manager: MX Control Project Manager: MX 111 0.14.05 DSS Project Manager: MX Control Project Manager: MX 111 0.14.05 DSS Project Manager: MX Control Project Manager: MX 111 0.14.05 DSS <th>j.</th> <th></th> <th>UNAL UNIES</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Sampled</th> <th>g Date: By:</th> <th>MS</th> <th></th> <th>Job No: Project:</th> <th>ES5611-2 MARRICKVI</th> <th>ΠE</th> <th></th> <th></th> <th></th>	j.		UNAL UNIES						Sampled	g Date: By:	MS		Job No: Project:	ES5611-2 MARRICKVI	ΠE			
03 B669 1430 AXX Project Manager: MK Location: MARRICK/ULE Sampling definition Sampling definition Control Project Manager: MK Location: MARRICK/ULE Juncation Depth Sampling definition Control Project Manager: MK Location: MARRICK/ULE Juncation Depth Sampling definition Control Project Manager: MK Location: MARRICK/ULE Juncation Depth Sampling definition Carling Project Manager: MK Location: MARRICK/ULE Marrier Manager: MK Carling Phyle Phyle Phyle Phyle Phyle Marrier 0.4103 DSG DV Criling Phyle Phyle Phyle Phyle Phyle 0.4103 DSG V V V V V V Phyle 0.4103 DSG V V V<		SOUTH MELBOURNE	VIC 3205							2								
maintaing details Sampling years Sampling years Sampling years Location popth sampling years Results required by: STANDARD Location popth sampling years Results required by: STANDARD Herry Waters Physics Physics Crilin Results Physics Physics Crilin Sclay BPA Original Physics Physics Physics Crilin Sclay BPA Original Physics Physics Physics Physics Crilin Sclay BPA Original Physics Physics Physics Phil 01-013 DSG Physics Physics Physics Physics Physics Phil 01-013 DSG Physics Physics Physics Physics Physics Phil 01-013 DSG Physics Physics Physics Physics Physics Phil 01-013 Physics Physics Physics Physics Physics	÷			FAX:					Project M	lanager:	MK		-ocation:	MARRICKVI	ιίε			
Location Depth Soil Water Results required by: STANDACD Image: International control of the state of th				Samo	to tune													
run run <td>1</td> <td>Location</td> <td>1</td> <td>Soil</td> <td>Water</td> <td></td> <td></td> <td></td> <td></td> <td>Results</td> <td>require</td> <td>d by:</td> <td>STAND</td> <td>ARD</td> <td></td> <td></td> <td></td> <td></td>	1	Location	1	Soil	Water					Results	require	d by:	STAND	ARD				
Philo Dial Pair Pair <t< td=""><td>1</td><td></td><td>(111)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1		(111)															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Heavy Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	CrIII	pH, CEC & % Clav	TPH and BTEX	РАН	ось	PCB	Phenols	Cyanide	ASBESTOS PRESENCE	ABESTOS %	voc	KEEP
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BH7	0.4-0.6	DSG		~			>	>	>	1	~	1	2	1	1	
BH8 $0.1-0.3$ DSG \checkmark <td>U.</td> <td>BH7</td> <td>1.1-1.3</td> <td>DSG</td> <td></td> <td>1</td> <td></td> <td>*</td> <td>YES</td>	U.	BH7	1.1-1.3	DSG		1											*	YES
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BH8	0.1-0.3	DSG		~			>		1	>			1	~		YES
BH10 0.8-1.0 DSG V <t< td=""><td></td><td>BHO</td><td>2406</td><td>100</td><td></td><td>7</td><td>1</td><td>1</td><td>1</td><td>/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>YES</td></t<>		BHO	2406	100		7	1	1	1	/								YES
BH10 0.410.5 DSG V <thv< th=""> V <th< td=""><td></td><td>ВНО</td><td>08-10</td><td>Dood</td><td></td><td>~</td><td></td><td></td><td>•</td><td></td><td></td><td>></td><td>></td><td>></td><td>></td><td>></td><td></td><td>YES</td></th<></thv<>		ВНО	08-10	Dood		~			•			>	>	>	>	>		YES
BH10 0.3-10 DSG V <thv< th=""> V <thv< td=""><td>1</td><td>BH10</td><td>0.4-0.5</td><td>DSG</td><td></td><td>~</td><td></td><td></td><td>~</td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>YES</td></thv<></thv<>	1	BH10	0.4-0.5	DSG		~			~	~								YES
BH11 0.2-0.4 DSG V <t< td=""><td>1</td><td>BH10</td><td>0.8-1.0</td><td>DSG</td><td></td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>></td><td></td><td>YES</td></t<>	1	BH10	0.8-1.0	DSG		~									~	>		YES
BH11 0.7-0.9 DSG V <t< td=""><td>1</td><td>BH11</td><td>0.2-0.4</td><td>DSG</td><td></td><td>1</td><td></td><td></td><td>~</td><td>~</td><td>></td><td>></td><td>></td><td>~</td><td>1</td><td>1</td><td></td><td>YES</td></t<>	1	BH11	0.2-0.4	DSG		1			~	~	>	>	>	~	1	1		YES
BH12 0.3-0.5 DSG V <t< td=""><td></td><td>BH11</td><td>0.7-0.9</td><td>DSG</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>YES</td></t<>		BH11	0.7-0.9	DSG		1									1			YES
BH12 0.7-0.9 DSG V Relinquished by Name Name Signature Signature Signature Michael Silk Michael Silk Mater sample, glass bottle USG Disturbed soil sample (glass jar) DSP Disturbed soil sample (glass jar) DSP Vater sample, plastic bag) DSP Mater sample, plastic bag) DSP		BH12	0.3-0.5	DSG		~			1	>	~	~			~	1		YES
Relinquished by Received by Name Received by Michael Silk MS 18.10.2013 Michael Silk Name Signature Received by Michael Silk MS 18.10.2013 Michael Silk Name Signature Nater sample, glass bottle USG Disturbed soil sample (glass jar) DSP Nater sample, plastic bottle DSG Disturbed soil sample (diass jar) Test required		BH12	0.7-0.9	DSG		>										•		YES
Name Signature Date Date Date Signature Name Name Signature Name Nam Nam Name			Reling	uished by										Received b				YES
Michael Silk MS 18.10.2013 Lund Vocation Lund Vocation <thlund th="" vocation<=""> <thlund th="" vocation<=""></thlund></thlund>		Name		Sign	ature	Date		17	1	Name	1		Signature	I DOLIDOOLI		1	Data	
water sample, plastic bottle DSG Disturbed soil sample (glass jar) DSP Disturbed soil sample (small plastic bag)	1			N	IS	18.10.2013			color			No.			2	s hord as	DID/I	
Water sample, plastic pottle DSG Disturbed soil sample (class lat)	0.39	nd: Water sample, glass bott	Ue		Undisturbed	I soil sample (glass jar)			DSP	Disturbed s	oil samole (s	mall plastic	had		2	5 trites		
	0	Water sample, plastic bo	ttle		Disturbed s	oil sample (glass jar)			>	Test requir	A suprementer the	monoid any no	IRpn				mole H /long	e

Liability & Risk Management Consulting

LRM Global Pty Ltd Fax: 65 Stubbs Street Email: Kensington VIC 3031 Web:

Web: Telephone: ABN: (03) 9371 3499 enquiries@Irmglobal.com.au www.Irmglobal.com.au (03) 9371 3400 34 116 540 277

Aargus Pty Ltd 446 Paramatta Road Petersham NSW 2049

Client Ref: ES5611-2

Job Number: 11161.000 Batch Number: B8653 Received Date: October 24, 2013 Analysed Date: November 01, 2013 No of Samples: 22

Dear Mark Kelly,

This report presents the analytical results of samples forwarded by Aargus Pty Ltd for asbestos analysis.

Methodology:

The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining Method. (LRM Global ID Method 1)

Analytical Results:

Sample No.	Sample Description	Result
BH1_0-0.5	The sample consisted of fibres, plant matter and soils Sample weight = 340.0 grams	Chrysotile Asbestos Detected Organic Fibre Detected
BH2_0-0.5	The sample consisted of soils Sample weight = 374.0 grams	No Asbestos Detected
BH3_0-0.5	The sample consisted of soils and plant matter Sample weight = 176.0 grams	No Asbestos Detected Organic Fibre Detected
BH4_0.3-0.5	The sample consisted of soils and plant matter Sample weight = 189.0 grams	No Asbestos Detected Organic Fibre Detected
BH5_0.2-0.4	The sample consisted of soils Sample weight = 140.0 grams	No Asbestos Detected
BH6_0.2-0.4	The sample consisted of soils and plant matter Sample weight = 203.0 grams	No Asbestos Detected Organic Fibre Detected

BH7_0.4-0.6	The sample consisted of fibres and soil with fibro cement fragments Sample weight = 161.0 grams	Chrysotile Asbestos Detected Crocidolite Asbestos Detected
BH8_0.1-0.3	The sample consisted of soils and plant matter Sample weight = 112.0 grams	No Asbestos Detected Organic Fibre Detected
BH9_0.4-0.6	The sample consisted of soils and plant matter Sample weight = 26.0 grams	No Asbestos Detected Organic Fibre Detected Synthetic Mineral Fibre Detected
BH10_0.4-0.5	The sample consisted of soils Sample weight = 140.0 grams	No Asbestos Detected
BH11_0.2-0.4	The sample consisted of soils and plant matter Sample weight = 105.0 grams	No Asbestos Detected Organic Fibre Detected
BH12_0.3-0.5	The sample consisted of soils Sample weight = 126.0 grams	No Asbestos Detected
BH13_0.2-0.4	The sample consisted of soils and plant matter Sample weight = 214.0 grams	No Asbestos Detected Organic Fibre Detected
BH14_0.2-0.3	The sample consisted of soils and plant matter Sample weight = 379.0 grams	No Asbestos Detected Organic Fibre Detected
BH15_0.3-0.5	The sample consisted of soils Sample weight = 291.0 grams	No Asbestos Detected
BH16_0.3-0.5	The sample consisted of soils Sample weight = 404.0 grams	No Asbestos Detected
BH17_0.3-0.5	The sample consisted of soils Sample weight = 208.0 grams	No Asbestos Detected
BH18_0.4-0.5	The sample consisted of soils Sample weight = 197.0 grams	No Asbestos Detected
BH19_0.2-0.4	The sample consisted of soils Sample weight = 493.0 grams	No Asbestos Detected
BH20_0.2-0.4	The sample consisted of soils Sample weight = 154.0 grams	No Asbestos Detected

BH21_0.3-0.5 The sample consisted of soils and plant matter Sample weight = 282.0 grams

No Asbestos Detected Organic Fibre Detected

BH22_0.2-0.3 The sample consisted of fibres fibro plaster, soils and plant matter Sample weight = 173.0 grams

Chrysotile Asbestos Detected Organic Fibre Detected

No asbestos found at the reporting limit of 0.1 g/kg.

10/

Approved Identifier Karu Jayasundara

1 ALAR

Report Issued by Karu Jayasundara

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

APPENDIX P

QA/QC ASSESSMENT

1 FIELD DATA QUALITY ASSESSMENT GROUNDWATER

1.1 Field Data Completeness

Field Sample Category - Soils	Number (Target)	Non-conformances	Number (Useable)	Overall Completeness %
Primary Samples	3	0	3	100%
Intra-Lab Duplicates	1	0	1	100%
Inter-Lab Duplicates	1	0	1	100%
Rinsate Blanks	1	0	1	100%
Trip Spikes	1	0	1	100%
Trip Blank	1	0	1	100%

Note: (*) – Overall Completeness is calculated as a percentage of the number of useable samples over the target number of samples required. The required percentage completeness is specified in the DQOs.

Field Consideration	Yes / No	Comments / Non-Conformances
Were all critical locations sampled?	Y	All critical locations were sampled as per the DQOs.
Were all samples collected from critical densities and depths?	Y	All sampled were recovered as per DQOs.
Were the Standard Operating Procedures (SOPs) appropriate and complied with?	Y	The Aargus Fieldwork Protocols were appropriate and complied with.
Were the samplers adequately experienced?	Y	Sampling was conducted by Aargus Environmental Scientist, Michael Silk.
Was field documentation complete and correct?	Y	Field records can be found within their respective appendices of the report.
Were an adequate number of intra-laboratory duplicate samples collected?	Y	100% of intra-laboratory duplicate samples required were collected as the table above.
Were an adequate number of inter-laboratory duplicate samples collected?	Y	100% of inter-laboratory duplicate samples required were collected as per the table above.
Were an adequate number of rinsate samples collected?	Y	100% of rinsate samples required were collected as per the table above.
Were an adequate number of trip blanks collected?	Y	100% of trip blanks required were collected as per the table above.
Were an adequate number of trip spikes collected?	Y	100% of trip spikes required were collected as per the table above.

1.2 Field Data Comparability

Field Consideration	Yes / No	Comments / Non-Conformances
Were the same SOPs used on each occasion?	Y	Aargus Fieldwork Protocols were utilised throughout each sampling event.
Was all sampling undertaken by the same person?	Y	Sampling was undertaken by the same scientist.
Could climatic conditions (such as temperature, rainfall, etc.) influence data comparability?	Ν	All sampling was undertaken on days without rain.
Were the same types of samples collected (filtered, size, fractions, etc.) for each media?	Y	Samples were collected in the same types of containers provided by the laboratory.
Was each field parameter measured using the same equipment?	Y	Water quality meter was carried out using the same meter.
Was the same method and equipment used for extraction of samples?	Y	Groundwater samples were recovered using the same type of equipment.

1.3 Field Data Representativeness

Laboratory Batch	Laboratory	Sample Medium	Container Breakages	Sample Preservation	Headspace / Temperature
GS13500	Groundswell	GW and Water (rinsate)	Compliant	Compliant	Compliant
398026-W	Eurofins MGT	GW	Compliant	Compliant	Compliant

Field Consideration	Yes / No	Comments / Non-Conformances
Was appropriate media sampled in accordance with the DQOs?	Y	All groundwater samples were sampled in accordance with the DQOs.
Was all media identified in the DQOs sampled?	Y	All groundwater samples specified in the DQO were sampled.
Were all samples appropriately handled?	Y	All samples collected were received by the laboratories intact.
Were all samples preserved Y		All samples collected were received by laboratories in the correct temperature. Where relevant, samples were stored in acid- preserved containers supplied by laboratories.

1.4 Field Data Precision

Field Consideration	Yes / No	Comments / Non-Conformances
Were the SOPs appropriate and complied with?	Y	The recovery of field duplicates was conducted in accordance with Aargus Fieldwork Protocols to allow for the assessment of field precision.

1.5 Field Data Accuracy

Field Consideration	Yes / No	Comments / Non-Conformances
Were the SOPs appropriate and complied with?	Y	The recovery of trip blanks and rinsate blanks was conducted in accordance with Aargus Fieldwork Protocols to allow for the assessment of field accuracy.

2 LABORATORY DATA QUALITY ASSESSMENT

2.1 Laboratory Data Completeness

Primary Samples - Soils						
TOTAL (Target) NCs TOTAL (Useable) Overall Completeness						
300	0 300 100%					

Field QA/QC Samples - Soils					
Sample Type	TOTAL (Target)	NCs	TOTAL (Useable)	Overall Completeness	
Intra-Lab. Dup.	100	0	100	100%	
Inter-Lab. Dup.	91	0	91	100%	
Rinsates	41	0	41	100%	
Trip Blanks	13	0	13	100%	
Trip Spikes	12	0	12	100%	

Laboratory QA/QC Samples - Soils				
Sample Type	TOTAL (Target)	NCs	TOTAL (Useable)	Overall Completeness
Lab. Duplicates	8	0	8	100%
Lab. Control Samples	12	0	12	100%
Method Blanks	110	0	110	100%
Matrix Spikes	0	0	0	0%
Surrogates	12	0	12	100%

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were all critical samples analysed according to the DQOs?	Y	All critical samples analysed according to DQOs.
Were all analytes analysed according to the DQOs?	Y	All analytes analysed according to DQOs.
Were the laboratory methods and PQLs appropriate?	Y	US EPA Analytical Methods were used. PQLs were below their respective assessment criteria
Was sample documentation complete?	Y	The sample documentation was correctly completed on the COC's.
Were sample holding times complied with?	Y	All the samples were within holding times for soil samples (398026-W & GS13500).
Were an adequate number of laboratory duplicates analysed?	Y	An adequate number of laboratory duplicates were analysed.
Were an adequate number of laboratory blank samples analysed?	Y	An adequate number of laboratory blank samples were analysed.
Were an adequate number of Laboratory Control Samples analysed?	Ν	An adequate number of Laboratory Control Samples were analysed by the laboratory.
Were an adequate number of laboratory matrix	N	No matrix duplicate spike were analysed by the laboratory.

Laboratory Considerations	Yes / No	Comments / Non-Conformances
spikes/duplicates analysed?		
Were an adequate number of surrogates analysed?	Y	An adequate number of surrogates were analysed.

2.2 Laboratory Data Comparability

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were the same analytical methods used for each analyte?	Y	All analytical methods used between laboratories were based on the USEPA/APHA methods.
Were the PQLs used for each analyte less than 20% of their respective assessment criteria?	Y	The PQLs for analytes in groundwater samples were below 20% of their respective assessment criteria.
Were the sample PQLs used for each analyte the same?	N	Sample PQL's were the same within each laboratory but differed between the primary and secondary laboratories. However, this was considered to be a minor non-conformance given that the results of the samples were either less than the laboratory PQL or well below the assessment criteria.
Were the same laboratories used for analyses of each contaminant type?	Y	Groundswell was the primary laboratory and Eurofins MGT was the secondary laboratory.
Were the units reported for each analyte the same?	Ν	Analytical units of measurement for groundwater were either ug/L or mg/L.

2.3 Laboratory Data Representativeness

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were all samples analysed according to the DQOs?	Y	The majority of the samples were analysed according to the DQOs.

2.4 Laboratory Data Precision

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were the RPDs of the field duplicates within control limits?	Y	• RPDs of the field duplicates were within control.
Were the RPDs of the laboratory duplicates within control limits?	Y	RPDs of the laboratory duplicates were within control

Note: Please refer to the tables attached at the end of this QA/QC assessment for calculations of the field RPDs.

2.5 Laboratory Data Accuracy

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were the rinsates free of contaminants?	Y	The concentrations of the analytes were below or equal to the PQLs.
Were the trip blanks free of contaminants?	Y	The test results for the trip blank samples, reported concentrations to be less than the PQL's, therefore cross contamination has not occurred.
Were the laboratory blanks free of contaminants?	Y	Laboratory blanks were free of contaminants.
Were the surrogate spikes within control limits?	Y	Surrogate spikes were within control limits.
Were laboratory control samples within control limits?	N	Laboratory control samples were within control limits.
Were matrix spike recoveries within control limits?	Y	No matrix spikes were analysed.
Were the trip spike recoveries within the control limits?	Y	The results show a recovery of trip spike concentrations, ranging between 88-106%. Based on the above, it is considered that no loss of volatiles from the recovered samples occurred.

ote: Please refer to the tables attached at the end of this QA/QC assessment for tables showing results of field blanks.

TABLE P1: Field Duplicates Summary Tables

Insert Table P1

Field Blanks (Wate	er)		SDG	13500	13500
Filter: SDG in('135			Field ID	R1	TB1
			Sampled_Date-Time	18/11/2013	18/11/2013
			Sample_Type	Rinsate	Trip_B
Method_Type	ChemName	Units	EQL		
500.1 C	TRH	mg/l	0.1	<0.1	<0.1
550.2_C	B(a)P Total Potency Equivalent	mg/l	0.001	<0.001	
	Acenaphthene	µg/L	0.5	<0.5	
	Acenaphthylene	µg/L	0.5	<0.5	
	Anthracene	µg/L	0.5	<0.5	
	Benz(a)anthracene	µg/L	0.5	<0.5	
	Benzo(a) pyrene	µg/L	0.5	<0.5	
	Benzo(b)&(k)fluoranthene	µg/l	500	<500	
	Benzo(b)fluoranthene	µg/L	0.5	<0.5	
	Benzo(g,h,i)perylene	µg/L	0.5	<0.5	
	Benzo(k)fluoranthene	µg/L	0.5	<0.5	
	Chrysene	µg/L	0.5	<0.5	
	Dibenz(a,h)anthracene	µg/L	0.5	<0.5	
	Fluoranthene	µg/L	0.5	<0.5	
	Fluorene	µg/L	0.5	<0.5	
	Indeno(1,2,3-c,d)pyrene	µg/L	0.5	<0.5	
	Naphthalene	µg/L	0.5	<0.5	
	PAHs (Sum of total)	µg/L	0.5	<0.5	
	Phenanthrene	µg/L	0.5	<0.5	
	Pyrene	µg/L	0.5	<0.5	
BTEX in Waters	Benzene	µg/L	1		
	Ethylbenzene	µg/L	1		
	Naphthalene	µg/L	1		
	Toluene	µg/L	1		
	Total BTEX	mg/l	0.003		
	Xylene (m & p)	µg/L	2		
	Xylene (o)	µg/L	1		
	Xylene Total	µg/L	2		
BTEXN_C	Benzene	µg/L	1	<1	<1
	Ethylbenzene	µg/L	1	<1	<1
	Naphthalene	µg/L	1	<1	<1
	Toluene	µg/L	1	<1	<1
	Total BTEX	mg/l	0.003	< 0.003	< 0.003
	Xylene (m & p)	µg/L	2	<2	<2
	Xylene (o)	µg/L	1	<1	<1
	Xylene Total	µg/L	2	<2	<2
EPA200.8	Arconic	ma/l	0.005	<0.005	
EFAZUU.Ö	Arsenic	mg/l	0.005	<0.005 <0.0001	
	Cadmium Chromium (III+VI)	mg/l	0.0001	<0.0001	
		mg/l			
	Copper Lead	mg/l	0.001	0.001 <0.001	
		mg/l	0.0001	<0.001	
	Mercury Nickel	mg/l	0.001	<0.0001	
	Zinc	mg/l mg/l	0.005	<0.001	

TABLE P2: Field Blanks (Rinsate & Trip Blank) Summary Table

TABLE P3: Trip Spike Summary Table

	TRIP SPIKE
ANALYTE	TS1
	%
	29.10.2013
Benzene	98
Toluene	88
Ethyl Benzene	90
C6-C10	106

1 FIELD DATA QUALITY ASSESSMENT - SOILS

1.1 Field Data Completeness

Field Sample Category - Soils	Number (Target)	Non-conformances	Number (Useable)	Overall Completeness %
Primary Samples	43	0	43	100%
Intra-Lab Duplicates	4	0	4	100%
Inter-Lab Duplicates	3	0	3	100%
Rinsate Blanks	2	0	2	100%
Trip Spikes	0	0	0	0%
Trip Blank	0	0	0	0%

Note: (*) – Overall Completeness is calculated as a percentage of the number of useable samples over the target number of samples required. The required percentage completeness is specified in the DQOs.

Field Consideration	Yes / No	Comments / Non-Conformances
Were all critical locations sampled?	Y	All critical locations were sampled as per the DQOs.
Were all samples collected from critical densities and depths?	Y	All sampled were recovered as per DQOs.
Were the Standard Operating Procedures (SOPs) appropriate and complied with?	Y	The Aargus Fieldwork Protocols were appropriate and complied with.
Were the samplers adequately experienced?	Y	Sampling was conducted by Aargus Environmental Scientist, Michael Silk. Please refer to the CVs appended to the report.
Was field documentation complete and correct?	Y	Field records can be found within their respective appendices of the report.
Were an adequate number of intra-laboratory duplicate samples collected?	Y	100% of intra-laboratory duplicate samples required were collected as the table above.
Were an adequate number of inter-laboratory duplicate samples collected?	Y	100% of inter-laboratory duplicate samples required were collected as per the table above.
Were an adequate number of rinsate samplescollected?	Y	100% of rinsate samples required were collected as per the table above.
Were an adequate number of trip blanks collected?	N	No trip blanks were collected.
Were an adequate number of trip spikes collected?	N	No trip spikes were collected.

1.2 Field Data Comparability

Field Consideration	Yes / No	Comments / Non-Conformances
Were the same SOPs used on each occasion?	Y	Aargus Fieldwork Protocols were utilised throughout each sampling event.
Was all sampling undertaken by the same person?	Y	Sampling was undertaken by the same scientist.
Could climatic conditions (such as temperature, rainfall, etc.) influence data comparability?	Ν	All sampling was undertaken on days without rain.
Were the same types of samples collected (filtered, size, fractions, etc.) for each media?	Y	Samples were collected in the same types of containers provided by the laboratory.
Was each field parameter measured using the same equipment?	Y	Headspace analysis was carried out using the same PID meter.
Was the same method and equipment used for extraction of samples?	Y	Soil samplesfrom shallow depths were recovered by the same hand auger and soil samples collected from monitoring well locations were recovered with the aid of flight augers attached to a drill rig. However, this was not considered to affect data comparability given that the same sampling techniques were used.

1.3 Field Data Representativeness

Laboratory Batch	Laboratory	Sample Medium	Container Breakages	Sample Preservation	Headspace / Temperature
GS13482	Groundswell	Soil and Water (rinsate)	Compliant	Compliant	Compliant
396799-S	Eurofins MGT	Soil	Compliant	Compliant	Compliant

Field Consideration	Yes / No	Comments / Non-Conformances
Was appropriate media sampled in accordance with the DQOs?	Y	All soil samples were sampledin accordance with the DQOs.
Was all media identified in the DQOs sampled?	Y	All soilsamples specified in the DQO were sampled.
Were all samples the samples appropriately handled?	Y	All samples collected were received by the laboratories intact.
Were all samples preserved Y		All samples collected were received by laboratories in the correct temperature. Where relevant, samples were stored in acid- preserved containers supplied by laboratories.

1.4 Field Data Precision

Field Consideration	Yes / No	Yes / No Comments / Non-Conformances	
Were the SOPs appropriate and complied with?	Y	The recovery of field duplicates was conducted in accordance with Aargus Fieldwork Protocols to allow for the assessment of field precision.	

1.5 Field Data Accuracy

Field Consideration	Yes / No	Comments / Non-Conformances
Were the SOPs appropriate and complied with?	N	No trip blanks were recovered. However, rinsate blanks were conducted in accordance with Aargus Fieldwork Protocols to allow for the assessment of field accuracy.

2 LABORATORY DATA QUALITY ASSESSMENT

2.1 Laboratory Data Completeness

Primary Samples – Soils				
TOTAL (Target)	NCs	TOTAL (Useable)	Overall Completeness	
2090	0	2090	100%	

Field QA/QC Samples – Soils				
Sample Type	TOTAL (Target)	NCs	TOTAL (Useable)	Overall Completeness
Intra-Lab. Dup.	358	0	358	100%
Inter-Lab. Dup.	258	0	258	100%
Rinsates	66	0	66	100%
Trip Blanks	0	0	0	100%
Trip Spikes	0	0	0	100%

Laboratory QA/QC Samples – Soils				
Sample Type	TOTAL (Target)	NCs	TOTAL (Useable)	Overall Completeness
Lab. Duplicates	167	0	167	100%
Lab. Control Samples	107	0	107	100%
Method Blanks	179	0	179	100%
Matrix Spikes	20	0	20	100%
Surrogates	128	0	128	100%

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were all critical samples analysed according to the DQOs?	Y	All critical samples analysed according to DQOs.
Were all analytes analysed according to the DQOs?	Y	All analytes analysed according to DQOs.
Were the laboratory methods and PQLs appropriate?	Y	US EPA Analytical Methods were used. PQLs were below their respective assessment criteria
Was sample documentation complete?	Y	The sample documentation was correctly completed on the COC's.
Were sample holding times complied with?	Y	All the samples were within holding time for soil samples (396799-S & GS13482).
Were an adequate number of laboratory duplicates analysed?	Y	An adequate number of laboratory duplicates were analysed.
Were an adequate number of laboratory blank samples analysed?	Y	An adequate number of laboratory blank samples were analysed.
Were an adequate number of Laboratory Control Samples analysed?	Y	An adequate number of laboratory control samples were analysed.
Were an adequate number of laboratory matrix	Y	An adequate number oflaboratory matrix spikes / duplicates were analysed.

Laboratory Considerations	Yes / No	Comments / Non-Conformances
spikes/duplicates analysed?		
Were an adequate number of surrogates analysed?	Y	An adequate number of surrogates were analysed.

2.2 Laboratory Data Comparability

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were the same analytical methods used for each analyte?	Y	All analytical methods used between laboratories were based on the USEPA/APHA methods.
Were the PQLs used for each analyte less than 20% of their respective assessment criteria?	Y	The PQLs for analytes in soil samples were below20% of their respective assessment criteria.
Were the sample PQLs used for each analyte the same?	Ν	Sample PQL's were the same within each laboratory but differed between the primary and secondary laboratories. However, this was considered to be a minor non-conformancegiven that the results of the samples were either less than the laboratory PQL or well below the assessment criteria.
Were the same laboratories used for analyses of each contaminant type?	Y	Groundswell was the primary laboratory. Eurofins MGTwas the secondary laboratory.
Were the units reported for each analyte the same?	Y	Analytical units of measurement for soil were mg/kg.

2.3 Laboratory Data Representativeness

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were all samples analysed according to the DQOs?	Y	The majority of the samples were analysed according to the DQOs.

2.4 Laboratory Data Precision

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were the RPDs of the field duplicates within control limits?	Ν	 RPDs of >50% were identified in a number of samples analysed for TRH, PAH and metals, and were likely due to heterogeneity between samples collected. Given that the majority of RPDs for the remaining analytes were <50%, the data set was considered to be adequately precise. The concentrations of all samples analysed were below the assessment criteria and not considered to affect the outcome of the assessment.
Were the RPDs of the laboratory duplicates within control limits?	Y	The RPDs of all laboratory duplicates were within control limits.

Note: Please refer to the tables attached at the end of this QA/QC assessment for calculations of the field RPDs.

2.5 Laboratory Data Accuracy

Laboratory Considerations	Yes / No	Comments / Non-Conformances
Were the rinsates free of contaminants?	Ν	The concentrations of the analytes were below the PQLs with the exception of some elevated concentrations of zinc, nickel &copper. This was likely to be associated with the final rinsate water used. However, given that the majority of the analyte results were below their respective PQLs, the data set was considered to be adequately accurate.
Were the trip blanks free of contaminants?	Ν	No trip blanks were analysed.
Were the laboratory blanks free of contaminants?	Y	Laboratory blanks were free of contaminants.
Were the surrogate spikes within control limits?	Y	Surrogate spikes were within control limits.
Were laboratory control samples within control limits?	Y	Laboratory control samples were within control limits.
Were matrix spike recoveries within control limits?	Ν	 Matrix spikes were within control limits in the majority of samples, with the exception of the following: Metals in 12 samples (GS13482) These where due to matrix interference.
Were the trip spike recoveries within the control limits?	Y	No trip spikes were analysed.

Note: Please refer to the tables attached at the end of this QA/QC assessment for tables showing results of field blanks.

TABLE P4: Field Duplicates Summary Tables

Insert table P4

Zinc

Field Blanks (Water)			SDG	13482	13482
Filter: SDG in('13482')			Field_ID	R1	R2
· · · ·			Sampled_Date-Time	17/10/2013	17/10/2013
			Sample_Type	Rinsate	Rinsate
Method_Type	ChemName	Units	EQL		
500.1_C	TRH	mg/l	0.1	<0.1	<0.1
550.2_C	Acenaphthene	µg/L	0.5	<0.5	<0.5
	Acenaphthylene	μg/L	0.5	<0.5	<0.5
	Anthracene	μg/L	0.5	<0.5	<0.5
	Benz(a)anthracene	μg/L	0.5	<0.5	<0.5
	Benzo(a) pyrene	μg/L	0.5	<0.5	<0.5
	Benzo(b)&(k)fluoranthene	µg/l	500	<500	<500
	Benzo(g,h,i)perylene	μg/L	0.5	<0.5	<0.5
	Chrysene	μg/L	0.5	<0.5	<0.5
	Dibenz(a,h)anthracene	μg/L	0.5	<0.5	<0.5
	Fluoranthene	μg/L	0.5	<0.5	<0.5
	Fluorene	μg/L	0.5	<0.5	<0.5
	Indeno(1,2,3-c,d)pyrene	μg/L	0.5	<0.5	<0.5
	Naphthalene	μg/L	0.5	<0.5	<0.5
	PAHs (Sum of total)	μg/L	0.5	<0.5	<0.5
	Phenanthrene	µg/L	0.5	<0.5	<0.5
	Pyrene	µg/L	0.5	<0.5	<0.5
BTEXN_C	Benzene	μg/L	1	<1	<1
	Ethylbenzene	µg/L	1	<1	<1
	Naphthalene	µg/L	1	<1	<1
	Toluene	µg/L	1	<1	<1
	Total BTEX	mg/l	0.003	<0.003	<0.003
	Xylene (m & p)	µg/L	2	<2	<2
	Xylene (o)	µg/L	1	<1	<1
	Xylene Total	µg/L	2	<2	<2
EPA200.8	Arsenic	mg/l	0.005	<0.005	<0.005
	Cadmium	mg/l	0.0001	<0.0001	< 0.0001
	Chromium (III+VI)	mg/l	0.001	<0.001	<0.001
	Copper	mg/l	0.001	0.007167	0.005844
	Lead	mg/l	0.001	<0.001	<0.001
	Mercury	mg/l	0.0001	<0.0001	<0.0001
	Nickel	mg/l	0.001	0.001033	<0.001

0.005

mg/l

TABLE P5: Rinsate Summary Tables

0.007698

0.008281

				2	5	>>>>>			
Field Duplicates (Water)	Water)		SDG	13500	13500		13500	Interlab_D	
Filter: SDG in('13500')	500')		Field_ID	GW3	GD1	RPD	GW3	GSS1	RPD
			Sampled_Date-Time	18/11/2013	18/11/2013		18/11/2013	18/11/2013	
Method_Type	ChemName	Units	EQL						
500.1_C	TRH	mg/l	0.1	<0.1	<0.1	0	<0.1		
						,			
550.2 C	B(a)P Total Potency Eq mg/l	l/gm	0.001	<0.001	<0.001	0	<0.001		
	Acenaphthene	µg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Acenaphthylene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Anthracene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Benz(a)anthracene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Benzo(a) pyrene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Benzo(b)&(k)fluoranthe µg/l	l/grl	500	<500.0	<500.0	0	<500.0		
	Benzo(b)fluoranthene	hg/L	0.5	<0.5	<0.5	0	<0.5		
	Benzo(g,h,i)perylene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
		hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Chrysene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	nthracene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Fluoranthene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Fluorene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Indeno(1,2,3-c,d)pyren{µg/L	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
		hg/L	0.5 (Primary): 20 (Interlab)	<0.5	<0.5	0	<0.5	<1.0 - 0.0	0
	PAHs (Sum of total)	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Phenanthrene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
	Pyrene	hg/L	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<1.0	0
BTEXN_C	Benzene	hg/L	-	<1.0	<1.0	0	<1.0	0.0	0
	Ethylbenzene	hg/L	1	<1.0	<1.0	0	<1.0	0.0	0
		hg/L	1 (Primary): 20 (Interlab)	<1.0	<1.0	0	<1.0	<1.0 - 0.0	0
	Toluene	hg/L	1	<1.0	<1.0	0	<1.0	0.0	0
	Total BTEX	mg/l	0.003	<0.003	<0.003	0	<0.003		
	Xylene (m & p)	µg/L	2	<2.0	<2.0	0	<2.0	0.0	0
	Xylene (o)	hg/L		<1.0	<1.0	0	<1.0	0.0	0
	Xylene Total	hg/L	2 (Primary): 3 (Interlab)	<2.0	<2.0	0	<2.0	<3.0	0
FPA200.8	Arsenic	ma/l	0.005	<0.005	<0.005	С	<0.005		
	Cadmium	l/um	0 0001	<0.0001	<0.001		<0.001		
	(I/+III) u	l/bm	0.001	<0.001	<0.001	0	<0.001		
		mg/l	0.001	<0.001	<0.001	0	<0.001		
	Lead	mg/l	0.001	<0.001	<0.001	0	<0.001		
	Mercury	mg/l	0.0001	<0.0001	<0.0001	0	<0.0001		
	Nickel	mg/l	0.001	0.004	0.004	0	0.004		
	Zinc	mg/l	0.005	0.006	0:00	40	0.006		

TABLE P1: Field Duplicates Summary Tables

Tables
Summary
Duplicates
P4: Field I
TABLE

	Interlab D SS3 RPD 17/10/2013	<pre><50.0 <100.0 <100.0 </pre>	<20.0 <20.0 0 0	<50.0 0 <	<20.0 0		<0.5 0	40.5 V0.5	 <0.5 <0.5 	<0.5 0	<0.5	 20.0 <li< th=""><th><0.5 0</th><th><0.5</th><th> <0.5 <0.5 <0.5 </th><th><0.5</th><th><0.1 0</th><th><0.5 0</th><th></th><th><pre>< 0.2</pre></th><th><0.3</th><th></th><th>27.0 18 5.5 3.1</th><th>46.0 23</th><th><0.05 0 10.0 58</th><th></th><th></th><th><0.05 0 0 <0 /th><th><0.05 0</th><th>0 10 0</th><th><pre>< 0.05</pre></th><th><0.05 0</th><th><pre>< 0.05</pre></th><th><0.05</th><th><0.05 0</th><th><0.05 0 <</th><th><0.05</th><th>┼┼</th><th><0.5 0</th><th><0.5 0</th><th><pre></pre></th><th></th><th>+</th><th></th><th><0.5 6.7</th><th><0.5 0.5</th><th></th><th><0.5 <0.5</th><th><0.5 0</th><th></th><th></th><th><0 0</th></li<>	<0.5 0	<0.5	 <0.5 <0.5 <0.5 	<0.5	<0.1 0	<0.5 0		<pre>< 0.2</pre>	<0.3		27.0 18 5.5 3.1	46.0 23	<0.05 0 10.0 58			<0.05 0 0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	<0.05 0	0 10 0	<pre>< 0.05</pre>	<0.05 0	<pre>< 0.05</pre>	<0.05	<0.05 0	<0.05 0 <	<0.05	┼┼	<0.5 0	<0.5 0	<pre></pre>		+		<0.5 6.7	<0.5 0.5		<0.5 <0.5	<0.5 0			<0 0
	13482 BH15 0.3-0.5 17/10/2013		<25.0 <50.0														<0.5	<1.0								16.752 31.0	<1.0	<0.1 <0.1	<0.1 60.1	6.1 1	≤0.1 1.0>	<0.1 60.1	<0.1 40.1	<0.1	- 0. 1.02	<0.1 60.1	<0.1	, v	<0.1	40.1 1	40.1 1	<0.1	<0.1	<4.0 <1.0	0.12	×1.0	<1.0 1.0	41.0 0	0.0	0.12	<10.0 <10.0	>10.0
	Interlab D SS2 17/10/2013	<pre><50.0 <50.0 <11 </pre>	<20.0 <20.0 0				<0.5 0 0.6 18		6.4 8.4 2 2 2		3.5 6 0.6 7.4	7.8 17	<0.5 0 2.3 67				<0.1 0	<0.5	П		П		15.0 52					<0.05 0 0 < <0.05 0	<0.05		<pre>0.05 <0.05</pre>	<0.05 0		<pre>< 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	H	<0.05 0		┼┼	<0.5	<0 50 50 0	<pre>< 0 20 20 20 20 20 20 20 20 20 20 20 20 2</pre>											-
	13482 BH4 0.3-0.5 17/10/2013		<25.0 <50.0			<25.0 7.735	<0.5	0.6	6,6 6,0									<pre></pre>					8.826					<0.1	40.1 60.1	<0.1 6.1	<0.1 <0.1	40.1 20.1	0. 1. 1.	0.1	<0.1 <0.1	<0.1 <0.1	4 0.1	0.0	<0.1	40.1 60.1	0.0	-0.1 -0.1	<0.1									
	Interlab D SS1 RPD 17/10/2013		<20.0 0				<0.5 <0.5				1.4 24		<0.5 0 1.0 75					<0.5 0			-0.0 <0.3		18.0 25 86.0 87				$\left \right $	<0.05 0 0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	<0.05 0	$\left \right $	<pre>0.05 <0.05</pre>	<0.05 0		<0.05	$\left \right $	<0.05 0			<0.5	<0.5 0.5	40.2 V 40.2					<0.5 <0.5			<0.5		0	<1.0 0
	13482 1 BH9 0.4-0.6 17/10/2013 1	<50.0 <520.0 <50.0	<25.0	280.0 <50.0	900.0 <25.0	<25.0 3.251	<0.5	40.5 4 4	1.7	2.0	1.1	2.4	<0.5 2.2	<0.5	0.8	2.1	<0.5	0.12	<3.0	41.0 0	<2.0	10.22 0.456	14.007	155.586	<0.1 15.666	1310.0 13.0		<0.1 <0.1	<0.1 <0.1	<0.1	1.02	<0.1	60.1 1.0 1.0	-0.1 -	-0.1 -0.1	<0.1	40.1 40.1	0.0	<0.1	<0.1	0.1	<0.1	<0.1	<4.0 <1.0	1.0 0.0	× 1.0	<1.0 1.0	4 0.0 0	0.0	0.1.0 1.0	<11.0 <10.0	0.01.5
ables	13482 D4 RPD 17/10/2013	<pre><50.0</pre> 50.0 50.0 50.0 63 50.0	<25.0 0 <		550.0 39 <25.0 0		<0.5 0 <				<0.5 0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <		<0.5 0 <0.5 57				<0.5 0	<pre><1.0</pre>		<pre></pre>	<2:0 0	5.864 37 0.617 48	13.088 32 27.567 62	69.5423 33	 <0.1 5.722 45 	1360.0 26 24.0 4																		<4.0<1.0<1.00		Ħ			0 0 0		<pre><10.0</pre> <pre></pre> <	
Summary T	13482 BH11 0.2-0.4 17/10/2013 17		<25.0 <50.0				-	\square	++										T		Ħ	+		+	+	1770.0 23.0	<1.0																	<4.0 <1.0	0.12	×1.0	<1.0 1.0	41.0 0.0	0.0	0.15 0.10	<1.0 <10.0	0.01.v
P4: Field Duplicates Summary Tables	13482 D3 17/10/2013		<25.0 0 <		540.0 138 <25.0 0		+	\mathbb{H}	0 0 0			+	<0.5 0 <	+			<0.5 0	<pre><1.0</pre>		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	┼┼	14.931 1 <0 1 0		2.9579 11	+	16.387 2 30.0 3	$\left \right $	 <0.1 <li< td=""><td>+</td><td>\mathbb{H}</td><td>++</td><td> 40.1 0 0 </td><td></td><td>0.0</td><td></td><td> 40.1 0 0 </td><td></td><td></td><td><0.1</td><td></td><td>0 0</td><td></td><td>+</td><td><4.0 0 0 <</td><td></td><td>Ħ</td><td></td><td></td><td></td><td></td><td><pre><1.0</pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre></td><td>1</td></li<>	+	\mathbb{H}	++	 40.1 0 0 		0.0		 40.1 0 0 			<0.1		0 0		+	<4.0 0 0 <		Ħ					<pre><1.0</pre> <pre></pre>	1
P4: Field D	13482 BH15 0.3-0.5 17/10/2013 17	+++	<25.0<50.0				+	$\left \right $				H	+				-	+	H		\parallel	+		\square	╉	$\left \right $	$\left \right $			\mathbb{H}	+	<0.1 <0.1	×0.1	<0.1	<0.1	<0.1 <0.1	<0.1	100	<0.1	<0.1 <0.1	×0.1	<0.1	<0.1	<4.0 <1.0	<1.0 1.0	< 1.0	<1.0 <1.0	× 1.0	0.0	<1.0 <1.0	<1.0 <10.0	0.01.5
TABLE	13482 13482 13482 13482 122 121 17/10/2013	<50.0 0 200.0 11 <50.0 0	<25.0 0 <	+			+		3.8 25			$\left \right $	<0.5 0 3.6 24				T	+	+	\vdash	++	+	10.856 21 48 343 33	+	+	\vdash		<0.1 0								<0.1 0		Π		, ,	0.1		- 0									
	13482 13482 13482 137/10/2013 17/	<pre><50.0</pre> <pre><270.0</pre>					+		6.0 9.0			6.6	<0.5 4.6	<0.5	2.7	6.5	<0.5		Ħ	<pre><1.0</pre>	Ħ	0.801		+	0.103 3.329	\vdash		<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	40.1 70.1	-0.1 	<0.1	<0.1	<0.1	1.00	<0.1	40.1 40.1	-0.1 100	<0.1 <0.1	<0.1									_
	13482 13482 13482 12/10/2013		<25.0 0 <		470.0 63 < <25.0 0	П	<0.5 0	$\left \right $	$^{++}$	1.8 36 1.3 42	0.8 32 0.8 12		Ľ		0.6 29 0		<0.5 0	<pre><1.0</pre>	\square	21:0 0 0 0	<0.0	14.683 36 0.542 17	10.562 28 31 504 7	09.4704 30		944.985 32 12.0 8	$\left \right $	 <0.1 <li< td=""><td> 40.1 0 0 </td><td>╞┼</td><td>Η</td><td> 40.1 0 0 </td><td></td><td> 40.1 10.0 <li< td=""><td></td><td><0.1 0.1 0 0</td><td>40.1 0 0 0</td><td></td><td></td><td> 40.1 0 0 </td><td>0.0</td><td><0.1 0 0</td><td></td><td><4.0 0 <</td><td>$\left \right$</td><td><1.0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<</td><td></td><td>\mathbb{H}</td><td>0 0 0</td><td>+</td><td><10 <10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td></li<></td></li<>	 40.1 0 0 	╞┼	Η	 40.1 0 0 		 40.1 10.0 <li< td=""><td></td><td><0.1 0.1 0 0</td><td>40.1 0 0 0</td><td></td><td></td><td> 40.1 0 0 </td><td>0.0</td><td><0.1 0 0</td><td></td><td><4.0 0 <</td><td>$\left \right$</td><td><1.0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<</td><td></td><td>\mathbb{H}</td><td>0 0 0</td><td>+</td><td><10 <10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td></li<>		<0.1 0.1 0 0	40.1 0 0 0			 40.1 0 0 	0.0	<0.1 0 0		<4.0 0 <	$\left \right $	<1.0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<		\mathbb{H}	0 0 0	+	<10 <10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	13482 BH9 0.4-0.6 17/10/2013 17	<50.0 <50.0 <50.0	<25.0	280.0 <50.0			<0.5			5 Q	1.1	2.5	<0.5						<3.0	<1.0 2 2 0	<2.0	10.22 0.456	14.007 33 0135	155.586	<0.1 15.666	1310.0 9 13.0		<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1		<0.1		<0.1 <0.1	<0.1 <0.1	0 V	<0.1	<0.1 <0.1	40.1 1	<0.1	<0.1	<4.0	1.0	×1.0	<1.0 <1.0	× 1.0	0.10	0.12 0.12	<1.0 <10.0	0.01.5
	SDG Field_ID Sampled_Date-Time	GQL 50 200 (Primary): 100 (Inter 50 (Primary): 100 (Inter	25 (Primary): 20 (Interk 50 (Primary): 20 (Interk	00 (Primary): 50 (Inter 0	100 25 (Primary): 20 (Interla	55 (Primary): 20 (Interla	0.5	5	0.5	1.5).5 5	0.5	.5	.6	4 (Primary): 0.5 (Interia 0.5	2 (Drimanu): 0.1 (Inter	0.5 (Primary): 0.1 (Inter 0.5 (Primary): 0.1 (Inter	1 (Primary): 0.5 (Interla		(Primary): 0.2 (Interla	(Primary): 0.3 (Interla	(Primary): 2 (Interlab)	1 (Primary): 5 (Interlab)	(Primary): 5 (Interlab)	0.1 (Primary): 0.05 (Inte 1 (Primary): 5 (Interlab)	(Primary): 5 (Interlab)		0.1 (Primary): 0.05 (Inte 0.1 (Primary): 0.05 (Inte	1 (Primary): 0.05 (Inte	.1	0.1 (Primary): 0.05 (Inte 0.1 (Primary): 0.05 (Inte	0.1 .1 (Primarv): 0.05 (Inte	1 (Primary): 0.05 (Intel 1 (Primary): 0.05 (Intel	0.1 (Primary): 0.05 (Inte	0.1 (Primary): 0.05 (Inte	0.1 (Primary): 0.05 (Inte 0.1 (Primary): 0.05 (Inte	1 (Primary): 0.05 (Intel 1 (Primary): 0.05 (Intel	1.1 1.1 1.1 (Drimerv): 0.2 (Inter	0.1 (Primary): 0.5 (Inter	1.1 (Primarv): 0.5 (Inter	0.1 (Primary): 0.5 (Inter	0.1 (Primary): 0.5 (Inter	0.1 (Primary): 0.5 (Inter (Primarv): 0.5 (Interla	(Primarv): 0.5 (Interla	1 (Primary): 0.5 (Interla	(Primary): 0.5 (Interla		1 (Primary): 0.5 (Interla	(Primary): 0.5 (Interla		0	mg/kg 10 (Primary): 1 (Interlat
		<u>nits</u> ng/kg ng/kg	C6 - C9 mg/kg 2 C10 - C14 mg/kg 5	ng/kg ng/kg	ng/kg ng/kg	ng/kg ng/kg	ng/kg ng/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg mg/kg	Naphthalei mg/kg 0	mg/kg mg/kg	mg/kg	Ethylbenze mg/kg	mg/kg	mg/kg	mg/kg	Xylene Tol mg/kg	mg/kg	mmg/kg	Lead mg/kg 1	mg/kg mg/kg	mg/kg %	Weak Acid mg/kg	a-BHC mg/kg Aldrin mg/kg	mg/kg mg/kg	mg/kg	DDD mg/kg 0	DDE mg/kg 0 DDT ma/kg 0	mg/kg	Endosulfar mg/kg 0	mg/kg	Endrin ald mg/kg 0 a-BHC (Lii ma/ka 0	mg/kg	mg/kg	mg/kg	1 mg/kg	Arochlor 1 mg/kg 0 Arochlor 1 mg/kg 0	mg/kg	ma/ka	2,3,4,6-tet mg/kg 4 2.4.5-trich mg/kg 1	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	3-MetnyIpr mg/kg 1 4,6-Dinitrd mg/kg 1	4-methylpt mg/kg 1 4-nitrophe mg/kg 1	Pentactilui Ing/ Na

SUMMARY OF RESULTS

- SOIL
TESTING
ORATORY
OF LAB
CHEDULE
S

		Τ		Ι			Π		Π									Τ		Τ	Τ	Т	Τ	Τ	Т	Τ		T				Ι							Τ	Ι				Τ	Τ		T	Τ	Т		Т	1				
VOC					>												>																		>			3	>																	
ASBESTOS		`			>			>			>		>		>		>		>	>		>		>		>	,		>		>		>	>	>		>	,	> >			>	>													
ASBESTOS PRESENCE		,			>			>			>		>		>		>		>	>		>		>		>	,		>		>		`	>	>		>	,	> >			>	>													
CYANIDE																	>			`				`							>				>			,	•					`		,	>			>	>					
PHENOL																	>			>				>							>				>			,	`					>		>	>		,	>	>					
РСВ								~			>		>		~		>		>	>				>		>					>				>			,	> >			>	>	>	>	>	>		,	> 7	> >					
OCP								>			>		>		>		>		>	>				>		>					>				>			,	> >			>	>	>	>	>	>		,	> :	> >	,				
PAH		,	• •		>			>	>		>		>		>		>			>		>		>		>	,	·	>		`		>		>		>	,	> >	>		>	>	>	>	>	>	> :	> :	> :	> >					
TPH & BTEX		,	• •		>			>	>		`		>		>		>		>	>		`		`		>	,	·	,		`		>		>		>	,	, ,	`		>	>	>	>	>	>	> 1	> 7	> :	> >					
Chromium																				>	>						,	• •					>	>																		urv. Nickel. Zir				
pH CEC & % Clav	,																			>	>						3	• •					>	>																		er. Lead. Merc			ylene	
MET-8		>	·	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	> :	> >	,	>	>	>	>	>	>	>	>	>	> 7	> >	>	>	>	>	>	>	>	>	> :	> 7	> 1	> >	ium. Copp	arbons	US	enzene, X	
SAMPLING		16-17.10.2013	16-17.10.2013	6-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013 16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	6-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013 46.47.40.2043	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013	16-17.10.2013 46-47-40-2043	16-17.10.2013	10.2013	16-17.10.2013	Arsenic. Cadmium. Chromium. Copper. Lead. Mercury. Nickel. Zinc	Polycyclic Aromatic Hydrocarbons	Total Petroleum Hydrcarbons	Foluene, Ethyl B	Fill, Topsoil, Natural
ТҮРЕ		L	Ť		Ľ.		z	Ľ.	ц	N	Ľ	z	Ľ.	z	Ľ.			1	Ì	÷		+					z u	T		T	t	z		N				z u		t	z	, F	ŭ.								Ì	Arsenic. C	olycyclic.	Total Petro	senzene,	Fill. Topso
Analyte Group	3 3 Depth (m)	10.0	0.5-1.0	1-1.5	0-0.5	0.5-1.0	1-1.5	0-0.5	0.5-1.0	1-1.5	0.3-0.5	0.9-1.0	0.2-0.4	0.8-1.0	0.2-0.4	0.9-1.0	0.4-0.6	1.1-1.3	0.1-0.3	0.4-0.6	0.8-1.0	0.4-0.5	0.8-1.0	0.2-0.4	0.7-0.9	0.3-0.5	0.0-0.0	0.8-1.0	0.2-0.3	0.6-0.8	0.3-0.5	0.9-1.0	0.3-0.5	0.8-1.0	0.3-0.5	0.7-0.8	0.4-0.5	0.7-0.8	0.2-0.4	1.0-1.1	2.4-2.5	0.3-0.5	0.2-0.3			,			,		Τ	MET.8.				
Analyte / Analyte Group	Sample	BH1	BH1	BH1	BH2	BH2	BH2	BH3	BH3	BH3	BH4	BH4	BH5	BH5	BH6	BH6	BH7	BH7	BH8	BH9	BH9	BH10	BH10	BH11	BH11	BH12	BH12 DU13	BH13	BH14	BH14	BH15	BH15	BH16	BH16	BH17	BH17	BH18	BH18	BH20	BH20	BH20	BH21	BH22	D1	D2	D3	D4	R1	77 ²⁰ 0	551 200	SS3	Notes				

Fill, Topsoil, Natural Duplicate (Blind) Split Sample

F,T,N: D: SS:

	Analyte Group	TYPE	SAMPLING DATE	MET-8	TPH & BTEX	PAH	VOC
Sample	Depth (m)						
Groundwater							
GW1	-	GW	29.10.2013	~	>	>	~
GW2	-	GW	29.10.2013	>	>	>	~
GW3		GW	29.10.2013	>	>	>	~
GD1	-	GW	29.10.2013	>	>	>	~
R1	-	WG/WP	29.10.2013	>	>	>	
GSS1	-	GW	29.10.2013	~	>	v	~
Notes	MET-8:	arsenic,	cadmium, chrom	ium, copp	er, lead, r	nercury, nic	kel, zinc
	PAH:	Polycycli	c Aromatic Hydro	ocarbons			
	TPH:	Total Pet	troleum Hydrcarb	ons			

SCHEDULE OF LABORATORY TESTING - GROUNDWATER

BTEX: Benzene, Toluene, Ethyl Benzene, Xylene

GW: Groundwater

\sim	Analy	HEAVY METALS (mg/kg)							
			5	N		≻.			
		ARSENIC	CADMIUM	CHROMIUM	ĔR	MERCURY	님	0	
		- SSE	ADA	-IRC	COPPER	ERC	NICKEI	EAD	ZINC
Sample Location	Depth (m)	Ā	õ	Ö	ŏ	Σ	z	Ë	Z
BH1	0-0.5	4	0.2	12	9	<0.1	2	27	188
BH1	0.5-1.0	4	0.2	13	131	<0.1	8	21	56
BH1	1-1.5	6	<0.1	14	10	<0.1	1	13	22
BH2	0-0.5	27	0.4	17	26	<0.1	4	2437	804
BH2	0.5-1.0	11	<0.1	14	5	<0.1	2	345	99
BH3	0-0.5	1	<0.1	4	1	<0.1	1	14	5
BH3 BH3	0.5-1.0	5	<0.1	14	9	<0.1	1	18	33
BH3 BH4	1.0-1.5 0.3-0.5	4 5	<0.1 0.8	14 9	8 35	<0.1 0.1	1 3	17 128	16 378
BH4	0.9-1.0	5	0.8	9 11	22	0.1	4	82	172
BH5	0.2-0.4	11	3.4	28	275	0.9	19	1176	1200
BH5	0.8-1.0	4	<0.1	13	10	<0.1	2	24	61
BH6	0.2-0.4	6	0.8	16	134	0.5	11	947	994
BH6	0.9-1.0	4	<0.1	13	14	<0.1	2	30	92
BH7	0.4-0.6	10	0.5	14	68	0.3	10	518	760
BH7	1.1-1.3	2	0.2	15	19	<0.1	2	81	272
BH8	0.1-0.3	4	1.1	43	113	0.2	8	527	760
BH9	0.4-0.6	10	0.5	14	34	<0.1	16	156	1310
BH9	0.8-1.0	7	<0.1	12	7	<0.1	2	23	83
BH10	0.4-0.5	10	0.3	9	19	<0.1	8	73	355
BH10	0.8-1.0	4	<0.1	13	8	<0.1	2	27	72
BH11	0.2-0.4	9	1.0	18	241	<0.1	9	376	1770
BH11	0.7-0.9	12	0.2	17	16	<0.1	4	39	174
BH12	0.3-0.5	21	1.3	33	260	0.3	26	758	1490
BH12	0.7-0.9	12	0.3	18	18	<0.1	4	63	318
BH13	0.2-0.4	5	0.2	13	23	0.1	4	131	150
BH13	0.8-1.0	8	<0.1	17	8	<0.1	2	28	32
BH14	0.2-0.3	5	0.8	15	171	0.2	6	229	439
BH14 BH15	0.6-0.8 0.3-0.5	4	<0.1	14 23	8 8	<0.1	1 6	24 37	31 17
BH15 BH15	0.9-1.0	16 10	<0.1 <0.1	23 16	2	<0.1 <0.1	1	10	6
BH16	0.3-0.5	7	0.1	21	15	<0.1	6	67	60
BH16	0.8-1.0	7	<0.1	21	2	<0.1	1	20	11
BH17	0.3-0.5	4	<0.1	15	9	<0.1	2	41	26
BH17	0.7-0.8	3	<0.1	15	6	<0.1	2	28	16
BH18	0.4-0.5	6	0.6	17	44	0.2	5	574	378
BH18	0.7-0.8	11	0.6	20	69	0.2	8	584	548
BH19	0.2-0.4	15	4.1	28	553	0.1	28	1900	1912
BH20	0.2-0.4	11	1.0	18	53	0.2	5	1700	675
BH20	1.0-1.1	9	0.4	20	66	0.5	5	468	369
BH20	2.4-2.5	5	<0.1	24	3	<0.1	2	20	16
BH21	0.3-0.5	16	1.7	25	86	0.3	9	962	960
BH22	0.2-0.3	12	0.3	19	26	0.1	4	279	210
Practical Quantitation Limits	s (PQL)	1	0.1	1	1	0.1	1	1	1.0
NATIONAL ENVIRONMEN	T PROTECTION MEASURE (2	2013)							
Health Investigation Level		1 i							
HIL A ^a		100	20	100	6000	40 ^e / 10 ^f	400	300	7400
HIL B ^b		500	150	500	30,000	120 ^e / 30 ^f	1200	1200	60,000
HIL C °		300	90	300	17,000	80 ^e / 13 ^f	1200	600	30,000
HIL D ^d		3000	900	3600	240,000	730 ^e / 180 ^f	6000	1500	400,000
Ecological Investigation L	evels (FII.) - Table 1B (5)								
Areas of ecological signific		40 ^h							
Urban residential and publi		100			70		31	1100	100
Commercial and industrial		160 ^h	•						
	ential with garden/accessible so		own nodu	e <10%	fruit and w	enetable into	ke (no pr	ultry) ale	o includes
	ire centres, preschools and prin			-10/0	an and V	Securic inte		any), als	
	ential with minimal opportunities			oc dwollir	age with full	v and nerma	oontly no	ed vard e	nace suc

TABLE A1 HEAVY METALS TEST RESULTS FOR HILs & ESLs

 Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high rise buildings and apartments.

c: Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate

d: Commercial/industrial, includes premises such as shops, offices, factories and industrial sites

e: Elemental mercury: HIL does not address elemental mercury. A site-specific assessment should be considered if elemental mercury is present, or suspected to be present,

f: Methyl mercury: assessment of methyl mercury should only occur where there is evidence of its potential source. It may be associated with inorganic mercury and anaerobic microorganism activity in aquatic environments. In addition the reliability and quality of sampling/analysis should be considered.

g: Lead: HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate.

h: Aged values are applicable to arsenic contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

TABLE A2 CATION EXCHANGE CAPACITY (CEC), pH & % CLAY TEST RESULTS FOR THE SOIL PROPERTIES FOR EILS

	Analy	rte CEC (cmol/kg)	pH (pH units)	% CLAY (%)
Sample Location	Depth (m)			
BH9	0.4-0.6	3.6	6.3	5.2
BH9	0.8-1.0	3.2	6.7	27.8
BH13	0.2-0.4	4.8	6.7	36.2
BH13	0.8-1.0	5.4	4.3	34.2
BH16	0.3-0.5	6.8	8.2	33.3
BH16	0.8-1.0	5.8	7.9	48.3

TABLE A3
SITE DERIVED EILs

	Analyte		1.1 1 - A		a/lia)	
	Analyte		HEA	VY METALS (m	y/ky)	
					=	
		COPPER	ZINC	NICKEL	CHROMIUM III	LEAD
Sample Locatio	1 ()	00	IIZ	Ē	ن	Ľ
Added Contam	inant Limit (ACL) ^a					
BH9	0.4-0.6	95	230	30	320	1100
BH9	0.8-1.0	95	230	30	400	1100
BH13	0.2-0.4	95	230	30	400	1100
BH13	0.8-1.0	60	100	30	400	1100
BH16	0.3-0.5	95	230	30	400	1100
BH16	0.8-1.0	95	230	30	400	1100
Ambient Backg	round Concentration (ABC)					
BH9	0.4-0.6	34	1310	16	<1	156
BH9	0.8-1.0	7	83	2	<1	23
BH13	0.2-0.4	23	150	4	<1	131
BH13	0.8-1.0	8	32	2	<1	28
BH16	0.3-0.5	15	60	6	<1	67
BH16	0.8-1.0	2	11	1	<1	20
Calculated EIL	(ABC + ACL)					
BH9	0.4-0.6	129	1540	46	320	1256
BH9	0.8-1.0	102	313	32	400	1123
BH13	0.2-0.4	118	380	34	400	1223
BH13	0.8-1.0	68	132	32	400	1128
BH16	0.3-0.5	110	290	36	400	1167
BH16	0.8-1.0	97	241	31	400	1120
FINAL SITE EIL	AFTER ROUNDING b					
BH9	0.4-0.6	130	1500	46	320	1300
BH9	0.8-1.0	102	300	32	400	1100
BH13	0.2-0.4	120	400	34	400	1200
BH13	0.8-1.0	70	100	32	400	1100
BH16	0.3-0.5	110	300	36	400	1200
BH16	0.8-1.0	100	200	31	400	1100
Notes a:	The ACL for Cu may be determ EIL calculation.	ined by pH or C	EC and the lower	of the determin	ed values should	be selected for
b:	The following rounding rules are	applicable to the	e EILs:			
	<1	to nearest 0.1				

to nearest 0.1
to nearest interger
to nearest 5
to nearest 10
to nearest 100

TABLE A4 ADDED CONTAMINANT LIMITS (ACLs) TEST RESULTS FOR EILs

	Analyte		HEA	VY METALS (m	g/kg)	
Sample Location	Depth (m)	COPPER	ZINC	NICKEL	CHROMIUM III	LEAD
BH9	0.4-0.6	34	1310	16	<1	156
BH9	0.8-1.0	7	83	2	<1	23
BH13	0.2-0.4	23	150	4	<1	131
BH13	0.8-1.0	8	32	2	<1	28
BH16	0.3-0.5	15	60	6	<1	67
BH16	0.8-1.0	2	11	1	<1	20
Practical Quantitation Limit	ts (PQL)	5	5	5	1	5
Site Derived Ecological	nvestigation Levels (EIL)					
BH9	0.8-1.0	102	300	32	400	1100
BH13	0.8-1.0	70	100	32	400	1100
BH16	0.8-1.0	100	200	31	400	1100

Notes a: none

\smallsetminus	Analyte	TRH (mg/kg)		BTEX	(mg/kg)		PAH (mg/kg)
Sample Location	Depth (m)	F1 ^a	F2 ^b	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	NAPHTHALENE
BH1	0-0.5	<25	<50	<0.2	<0.5	<1	<2	<1
BH1 BH2	0.5-1.0	<25	<50	<0.2	<0.5	<1	<2	<1
	0-0.5	<25	<50	< 0.2	< 0.5	<1	<2	<1
BH3 BH3	0-0.5	<25	<50	<0.2	< 0.5	<1 <1	<2	<1 <1
BH4	0.5-1.0	<25	<50	< 0.2	< 0.5		<2 <2	<1
BH5	0.3-0.5 0.2-0.4	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<2	<1
BH6						<1	<2	
BH0 BH7	0.2-0.4 0.4-0.6	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<2 <2	<1 <1
BH7 BH8	0.4-0.8	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<2 <2	<1
ВН9	0.4-0.6	<25 <25	<50 <50	<0.2	< 0.5	<1	<2	<1
BH10	0.4-0.5	<25	<50	<0.2	< 0.5	<1	<2	<1
BH10 BH11	0.2-0.4	<25	<50	<0.2	< 0.5	<1	<2	<1
BH12	0.3-0.5	<25	<50 <50	<0.2	< 0.5	<1	<2	<1
BH13	0.2-0.4	<25	<50	<0.2	<0.5	<1	<2	<1
BH14	0.2-0.3	<25	<50	<0.2	<0.5	<1	<2	<1
BH15	0.3-0.5	<25	<50	<0.2	<0.5	<1	<2	<1
BH16	0.3-0.5	<25	<50	<0.2	<0.5	<1	<2	<1
BH17	0.3-0.5	<25	<50	<0.2	<0.5	<1	<2	<1
BH18	0.4-0.5	<25	<50	<0.2	<0.5	<1	<2	<1
BH19	0.2-0.4	<25	<50	<0.2	<0.5	<1	<2	<1
BH20	0.2-0.4	<25	<50	<0.2	<0.5	<1	<2	<1
BH20	1.0-1.1	<25	<50	<0.2	< 0.5	<1	<2	<1
BH21	0.3-0.5	<25	<50	<0.2	<0.5	<1	<2	<1
BH22	0.2-0.3	<25	<50	<0.2	<0.5	<1	<2	<1
Practical Quantitation Limits (PQL		20	50	0.2	0.5	1	2	1
NATIONAL ENVIRONMENT PR		F (2013)						
Health Screening Levels (HSL)								
HSL A & HSL B: Low-high density	. ,							
Source depth - 0m to <1m		50	280	0.7	480	NL	110	5
Source depth - 1m to <2m		90	NL	1	NL	NL	310	NL
Source depth - 2m to <4m		150	NL	2	NL	NL	NL	NL
Source depth - 4m +		290	NL	3	NL	NL	NL	NL
HSL C: recreational / open space								
Source depth - 0m to <1m		NL	NL	NL	NL	NL	NL	NL
Source depth - 1m to <2m		NL	NL	NL	NL	NL	NL	NL
Source depth - 2m to <4m		NL	NL	NL	NL	NL	NL	NL
Source depth - 4m +		NL	NL	NL	NL	NL	NL	NL
HSL D: Commercial / Industrial								
Source depth - 0m to <1m		310	NL	4	NL	NL	NL	NL
Source depth - 1m to <2m		480	NL	6	NL	NL	NL	NL
Source depth - 2m to <4m		NL	NL	9	NL	NL	NL	NL
Source depth - 4m +		NL	NL	20	NL	NL	NL	NL
-	obtain E1 subtract the							

TABLE B1 TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND NAPHTHALENE TEST RESULTS FOR HSLs IN CLAY

 I
 I

 a:
 To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.

 b:
 To obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction.

 NL:
 Not Limiting

Notes

	Analyte		TRH	l (mg/kg)			BTEX	(mg/kg)		PAH (mg/kg)
Sample Location	Depth (m)	F1 (C ₆ -C ₁₀) ^a	F2 (>C ₁₀ -C ₁₆) ^b	F3 (C ₁₆ -C ₃₄)	F4 (C ₃₄ -C ₄₀)	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	BENZO(a)PYRENE
BH1	0-0.5	<25	<50	<100	<50	<0.2	<0.5	<1	<2	<0.05
BH1	0.5-1.0	<25	<50	<100	<50	<0.2	<0.5	<1	<2	<0.05
BH2	0-0.5	<25	<50	<100	<50 <50	<0.2	<0.5	<1	<2	0.7
BH3	0-0.5	<25	<50	<100	<50 <50	<0.2	<0.5	<1	<2	<0.05
BH3	0.5-1.0	<25	<50	<100	<50 <50	<0.2	<0.5	<1	<2	<0.05
BH4	0.3-0.5	<25	<50	270	170	<0.2	<0.5	<1	<2	4.9
BH5	0.2-0.4	<25	<50	270	200	<0.2	<0.5	<1	<2	3.1
BH6	0.2-0.4	<25	<50	260	170	<0.2	<0.5	<1	<2	3.5
BH7	0.4-0.6	<25	<50	<100	<50	<0.2	<0.5	<1	<2	1.75
BH8	0.1-0.3	<25	<50	210	210	<0.2	<0.5	<1	<2	-
BH9	0.4-0.6	<25	<50	520	380	<0.2	<0.5	<1	<2	1.7
BH10	0.4-0.5	<25	<50	<100	160	<0.2	<0.5	<1	<2	0.4
BH11	0.2-0.4	<25	<50	500	320	<0.2	<0.5	<1	<2	0.6
BH12	0.3-0.5	<25	<50	350	280	<0.2	<0.5	<1	<2	0.6
BH13	0.2-0.4	<25	<50	<100	<50	<0.2	<0.5	<1	<2	0.7
BH14	0.2-0.3	<25	<50	190	210	<0.2	<0.5	<1	<2	5.5
BH15	0.3-0.5	<25	<50	<100	<50	<0.2	<0.5	<1	<2	<0.05
BH16	0.3-0.5	<25	<50	<100	<50	<0.2	<0.5	<1	<2	<0.05
BH17	0.3-0.5	<25	<50	<100	<50	<0.2	<0.5	<1	<2	<0.05
BH18	0.4-0.5	<25	<50	<100	<50	<0.2	<0.5	<1	<2	0.7
BH19	0.2-0.4	<25	<50	100	120	<0.2	<0.5	<1	<2	0.4
BH20	0.2-0.4	<25	<50	970	380	<0.2	<0.5	<1	<2	2.3
BH20	1.0-1.1	<25	<50	460	300	<0.2	<0.5	<1	<2	2.15
BH21	0.3-0.5	<25	<50	1120	440	<0.2	<0.5	<1	<2	6.1
BH22	0.2-0.3	<25	<50	380	270	<0.2	<0.5	<1	<2	1.5
Practical Quantitation Limits (PQL)		25	50	100	50	0.2	0.5	1	2	0.05
NATIONAL ENVIRONMENT PRO)13)									
Ecological Screening Levels (ES	L) - Table 1B (6)	125	25							
Areas of ecological significance				-	-	10	65	40	1.6	0.7
Irban residential and public open space			120	1300	5600	65	105	125	45	0.7
Commercial and industrial		215	170	2500	6600	95	135	185	95	0.7

TABLE B2 TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND BENZO(a)PYRENE TEST RESULTS ESLs FOR FINE GRAINED SOIL TEXTURE

b: To obtain F2 subtract naphthalene from the >C₁₀-C₁₆ fraction. *: ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

"-": "-" indicates that insufficient data was available to derive a value.

	Analyte		TRH (mg/kg)	
		F1 (C ₆ -C ₁₀) ^a	F2 (>C ₁₀ -C ₁₆) ^a	F3 (C ₁₆ -C ₃₄)	F4 (C ₃₄ -C ₄₀)
Sample Location	Depth (m)				
BH1	0-0.5	<25	<50	<100	<50
BH1	0.5-1.0	<25	<50	<100	<50
BH2	0-0.5	<25	<50	<100	<50
BH3	0-0.5	<25	<50	<100	<50
BH3	0.5-1.0	<25	<50	<100	<50
BH4	0.3-0.5	<25	<50	270	170
BH5	0.2-0.4	<25	<50	270	200
BH6	0.2-0.4	<25	<50	260	170
BH7	0.4-0.6	<25	<50	<100	<50
BH8	0.1-0.3	<25	<50	210	210
BH9	0.4-0.6	<25	<50	520	380
BH10	0.4-0.5	<25	<50	<100	160
BH11	0.2-0.4	<25	<50	500	320
BH12	0.3-0.5	<25	<50	350	280
BH13	0.2-0.4	<25	<50	<100	<50
BH14	0.2-0.3	<25	<50	190	210
BH15	0.3-0.5	<25	<50	<100	<50
BH16	0.3-0.5	<25	<50	<100	<50
BH17	0.3-0.5	<25	<50	<100	<50
BH18	0.4-0.5	<25	<50	<100	<50
BH19	0.2-0.4	<25	<50	100	120
BH20	0.2-0.4	<25	<50	970	380
BH20	1.0-1.1	<25	<50	460	300
BH21	0.3-0.5	<25	<50	1120	440
BH22	0.2-0.3	<25	<50	380	270
Practical Quantitation Limits (PQ	L)	25	50	100	50
NATIONAL ENVIRONMENT PRO Management Limits - Table 1B		2013)			
Residential parkland and public	open space	800	1000	3500	10,000
Commercial and industrial		800	1000	5000	10,000
Notes a: Se	parate management limi	ts for BTEX and	naphthalene are	not available her	nce these should

TABLE B3 TOTAL RECOVERABLE HYDROCARBONS (TRH) TEST RESULTS MANAGEMENT LIMITS FOR FINE GRAINED SOIL TEXTURE

Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

Management limits are applied after consideration of relevant ESLs and HSLs. b:

	Analyte		PAH (m	ig/kg)				Organoo	hlorine Pe	sticides (r	ng/kg)			Phenols (mg/kg)				
																OL		
		Carcinogenic PAHs (as BaP TEQ) °	TOTAL PAHs	BENZO(a)PYRENE	NAPH THALENE	DDT + DDE + DDD	ALDRIN & DIELDRIN	CHLORDANE	ENDOSULFAN	ENDRIN	HEPTACHLOR	HCB	METHOXYCHLOR	PCB -	PHENOL	PENTACHLOROPHENOL	CRESOLS	CYAN IDE (free)
Sample Location	Depth (m)								Ξ	Ξ	Т	Ĩ	ž		E.	Ē		Ö
BH1 BH1	0-0.5 0.5-1.0	<1 <1	<1 <1	<0.05 <0.05	<0.1 <0.1		-	-	-					-	-			-
BH1	1-1.5	-					-	-	-				-		-		-	
BH2	0-0.5	1.8	<1	0.7	<0.1	-	-	-	-	-	-	-	-	-	-		-	-
BH2	0.5-1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH3 BH3	0-0.5	<1	<1	<0.05	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	-		-	-
BH3	0.5-1.0 1.0-1.5	<1	<1	<0.05	<0.1		-	-	-			-	-	-	-		-	-
BH4	0.3-0.5	7.7	<1	4.9	<0.2	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	-	-		1
BH4	0.9-1.0		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH5	0.2-0.4	5.2	<1	3.1	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	-	-	-	-
BH5	0.8-1.0	-	-		-	-	-	-	-				-	-	-		-	-
BH6 BH6	0.2-0.4 0.9-1.0	5.8	<1	3.5	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	1.	-	-	-
BH0 BH7	0.9-1.0	3.3	<1	1.75	<0.1	<0.3	<0.2	< 0.2	< 0.2	<0.1	<0.1	< 0.1	<0.1	< 0.7	<1	<10	<1	<1
BH7	1.1-1.3	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-
BH8	0.1-0.3	-	-	-	-	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	-		-	-
BH9	0.4-0.6	3.3	<1	1.7	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	<1	<10	<1	-
BH9 BH10	0.8-1.0 0.4-0.5	- 1	<1	0.4	- <0.1		-	-	-	-	-	-	-	-	-	-	-	-
BH10 BH10	0.4-0.5	-		-			-	-	-				-	-	-			
BH11	0.2-0.4	1.6	<1	0.6	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	<1	<10	<1	<1
BH11	0.7-0.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH12	0.3-0.5	<1	<1	0.6	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	-	-	-	-
BH12 BH13	0.7-0.9 0.2-0.4	- 1.6	<1	0.7	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-
BH13 BH13	0.8-1.0	1.0		0.7			-	-	-				-	-	-			
BH14	0.2-0.3	9.1	<1	5.5	<0.1	-	-	-	-	-	-	-	-	-	-		-	-
BH14	0.6-0.8		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH15	0.3-0.5	<1	<1	< 0.05	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	<1	<10	<1	<1
BH15 BH16	0.9-1.0 0.3-0.5	- <1	<1	< 0.05	<0.1		-	-	-	-	-	-	-	-	-	-	-	-
BH16 BH16	0.8-1.0	<1	<1	<0.05	<0.1		-	-	-				-	-	-			-
BH17	0.3-0.5	<1	<1	< 0.05	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	<1	<10	<1	<1
BH17	0.7-0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH18	0.4-0.5	1	<1	0.7	<0.1	-	-	-	-	-	-	-	-	-	-		-	-
BH18 BH19	0.7-0.8 0.2-0.4	- <1	<1	0.4	<0.1	< 0.3	<0.2	- <0.2	< 0.2	<0.1	< 0.1	< 0.1	<0.1	<0.7	<1	- <10	<1	- <1
BH19 BH20	0.2-0.4	42	<1	2.3	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	<1	<10	<1	<1
BH20	1.0-1.1	3.9	<1	2.15	<0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	-			-
BH20	2.4-2.5	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH21	0.3-0.5	10	<1	6.1	0.2	< 0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.7	-	-	-	-
BH22	0.2-0.3	2.8	<1	1.5 0.05	<0.1 0.1	<0.3	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1 0.1	<0.7	- 1	- 10	- 1	- 1
Practical Quantitation Lin			1	0.05	0.1	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.7	1	10	1	1
	IENT PROTECTION MEASURE (20	13)																
Health Investigation Le	evels (HIL) - Table 1A (1)	3	300			240	6	50	270	10	6	10	300	1	3000	100	400	250
HL B ^b		4	400			600	10	90	400	20	10	15	500	1	45,000	130	400	300
HIL C °		3	300			400	10	70	340	20	10	10	400	1	40,000	120	4000	240
HIL D ^d		40	4000			3600	45	530	2000	100	50	80	2500	7	240,000	660	25,000	1,500
Ecological Investigatio	on Levels (EIL) - Table 1B (5)																	
Areas of ecological sign					10 ^g	3 ^{g. k}												
Urban residential and pu					170 ⁹ 370 ⁹	180 ^{g, k} 640 ^{g, k}												
Commercial and industr					3/0 3	640 ****												
	Levels (ESL) - Table 1B (6)																	
Areas of ecological sign Urban residential and pu				0.7 ¹														
Commercial and industr				0.7 0.7 ⁱ														
	sidential with garden/accessible soil (h	ome arown ~~4	luce < 100		anetable ~	take (no roud	try) also in	ncludes ob	ildcare cor	atres pres	chools on	1 primary e	chools	I	1			
	sidential with garden/accessible soll (n sidential with minimal opportunities for												IGHUUIS.					

TABLE C POLYCYCLIC AROMATIC HYDROCARBONS (PAH), ORGANOCHLORINE PESTICIDES (OCP), POLYCHLORINATED BIPHENYLS (PCB), PHENOLS AND CYANIDES TEST RESULTS FOR HILS, EILS & ESLS

Testional with generative states and provide your poulder vito intrum and registed at many (with pould); testinicates unlocate unlocate built and point and the states of the state of the states of t b: c:

specific assessment may be innote apylophate. Commercial/displayting includes premises such as shops, offices, factories and industrial sites Carcinogenic PAHs: HL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEO is calculated by multiplying the concentration of each carcinogenic PAHs: HL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEO is calculated by multiplying the concentration of each carcinogenic PAHs: HL is based on the 8 carcinogenic PAHs and these products. PAH species <u>TEF PAH species TEF</u> Betrac(a)suffracenne 0.1 Betrac(a),highrene 0.01 Betrac(a) (privantemene 0.1 Diber(a),highrene 1 Betrac(b) (harcharthene 0.1 Diber(a),highrene 1 d: e:

 Dericularity/server
 1
 Outpresset

 Berock/Hubranthene
 0.1
 Dibero(a.b)/setrations
 1

 Where the KiJP Occurs in bitument fragments it is reliable/with/immobile and does not represent a significant health risk.
 0.1

 Total PAHs: HL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHA) 1998). The application of the total PAH HL, should consider the presence of carcinogenic PAHs and naphthalene (the most voiatel PAH; Carcinogenic PAHs most and PAHs in bitument the KiJPT EFGH L. Naphthalene reported in the total PAH HL.
 f:

g: h:

Institution of the was available to calculate aged values for DDT and naphthalene, consequently the values for feath contamination should be used. Uban residential / public open space is broadly equivalent to the HL-A HL-B and HL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7. For coarse and fine grained totatics are appreciated as the scenarios of the present at a site, a site-specific assessment of exposure to all PCBs (including dioxin-like PCBs) should be undertaken. j:

k For DDT only.

TABLE D VOLATILE ORGANIC COMPOUNDS (VOC) TEST RESULTS

\smallsetminus	Analyte								VOC (mg	'kg)							
		Chloromethane	Vinyl Chloride	Chloroethane	1,1 Dichloroethene	Trans 1,2 dichloroethene	1,1 dichloroethane	cis 1,2 dichloroethene	Bromochloromethane	Chloroform	1,2 Dichloroethane	1,1,1 trichloroethane	Trichloroethene	1,1,2 trichloroethane	Tetrachloroethene	1,1,1,2 tetrachloroethane	1,1,2,2, tetrachloroethane
Sample Location	Depth (m)																
BH2	0-0.5	<1	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH7	0.4-0.6	<1	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5
BH17	0.3-0.5	<1	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
BH19	0.2-0.4	<1	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Practical Quantitation Limits (PQL)	1	1	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

TABLE E ASBESTOS TEST RESULTS

/	Analyte			
		Field Observations*	Laboratory Results	Laboratory Results
	Sample Leasting Depth (m)		Asbestos Type Present / Absent	Asbestos %w/w
Sample Location	Depth (m)			
BH1	0-0.5	No visible fibro cement pieces observed	Chrysotile asbestos detected	NT
BH2	0-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH3	0-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH4	0.3-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH5	0.2-0.4	No visible fibro cement pieces observed	No asbestos detected	NT
BH6	0.2-0.4	No visible fibro cement pieces observed	No asbestos detected	NT
BH7	0.4-0.6	No visible fibro cement pieces observed	Chrysotile & Crocidolite asbestos detected	NT
BH8	0.1-0.3	No visible fibro cement pieces observed	No asbestos detected	NT
BH9	0.4-0.6	No visible fibro cement pieces observed	No asbestos detected	NT
BH10	0.4-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH11	0.2-0.4	No visible fibro cement pieces observed	No asbestos detected	NT
BH12	0.3-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH13	0.2-0.4	No visible fibro cement pieces observed	No asbestos detected	NT
BH14	0.2-0.3	No visible fibro cement pieces observed	No asbestos detected	NT
BH15	0.3-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH16	0.3-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH17	0.3-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH18	0.4-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH19	0.2-0.4	No visible fibro cement pieces observed	No asbestos detected	NT
BH20	0.2-0.4	No visible fibro cement pieces observed	No asbestos detected	NT
BH21	0.3-0.5	No visible fibro cement pieces observed	No asbestos detected	NT
BH22	0.2-0.3	No visible fibro cement pieces observed	Chrysotile asbestos detected	NT
WA Guidelines for t	he Assessme	ent, Remediation and Management of Ast	bestos - Contaminated Sites in Western Australia -	May 2009
National Environme	ent Protection	n (Assessment of Site Contamination) Me	asure 2013 Schedule B1	
%w/w asbestos for FA	and AF			0.001%
%w/w asbestos for AC!	I - Residential u	se, childcare centres, preschools etc.		0.01%
%w/w asbestos for AC!	I - Residential, I	minimal soil access (fully sealed surfaces)		0.04%
%w/w asbestos for AC!	I - Parks, public	open spaces, playing fields etc.		0.02%
%w/w asbestos for AC!	A - Commercial	/ Industrial		0.05%

 %www asbestos for ACM - Commercial / Industrial

 Note:

 ACM = Asbestos Containing Materials >7mm x 7mm (visible by eye)

 FA = Friable and Fibrous Asbestos Materials >7mm x 7mm (visible by eye)

 AF = Asbestos Fines <7mm x 7mm ACM including free fibres (visible by microscope only)</td>

 * Field Observations: All fibro-cement fragments observed are assumed to contain Asbestos until otherwise tested and recorded as such.

 NT = Not Tested

TABLE F HEAVY METALS TEST RESULTS (GROUNDWATER SAMPLES)

Analyte				HEAVY N	1ETALS (μ	g/L)		
Sample Location	ARSENIC (As) - Total	CADMIUM (Cd)	CHROMIUM (Cr) - Total	COPPER (Cu)	LEAD (Pb)	MERCURY (Hg) - Total	NICKEL (Ni)	ZINC (Zn)
GW1	<5	<1	<1	2	<1	<0.1	2	7
	-	-	-	-				
GW2	<5	<1	<1	<1	<1	<0.1	5	10
GW3	<5	<1	<1	<1	<1	<0.1	4	6
Practical Quantitation Limits (PQL)	5	0.1	1	1	1	0.1	1	5
ANZECC & ARMCANZ ^a Guidelines for F	resh and N	larine Wat	er Quality	(2000)				
Aquatic Ecosystems (Trigger Values)								
Fresh Water	24 ^b	0.2	NV ^d	1.4	3.4	0.06	11	8
	13 [°]		1 ^e					
Water for recreational purposes	50	5	50	1000	50	1	100	5000
Notes a: Inv	estigation le	evels apply	to typical s	lightly-mod	erated distu	urbed systems	S.	

a: Investigation levels apply to typical slightly-moderated disturbed systems.

b: as As (III)

C: as As (V)

d: as Cr (III) e:

as Cr (VI) NV:

No value derived

TABLE G
TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND NAPHTHALENE TEST RESULTS
FOR GROUNDWATER HSLs IN CLAY

	Analyte	TRH	(mg/L)		BTEX	(mg/L)		PAH (mg/L)
Sample Location	Depth (m)	F1 ^a	F2 ^b	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	NAPHTHALENE
	Depth (m)	-0.01	<0.1	-0.001	-0.001	-0.001	<0.000	<0.001
GW1	-	< 0.01			< 0.001		< 0.002	
GW2	-	< 0.01	<0.1		< 0.001		< 0.002	< 0.001
GW3	-	<0.01	<0.1	<0.001	<0.001	<0.001	<0.002	<0.001
Practical Quantitation Limits (PQL)		0.01	0.1	0.001	0.001	0.001	0.002	0.001
NATIONAL ENVIRONMENT PROT	ECTION MEASUR	E (2013)						
Health Screening Levels (HSL) - 7	Table 1A (4)							
HSL A & HSL B: Low-high density	residential							
Source depth - 2m to <4m		NL	NL	5	NL	NL	NL	NL
Source depth - 4m to <8m		NL	NL	5	NL	NL	NL	NL
Source depth - 8m +		NL	NL	5	NL	NL	NL	NL
HSL C: recreational / open space								
Source depth - 2m to <4m		NL	NL	NL	NL	NL	NL	NL
Source depth - 4m to <8m		NL	NL	NL	NL	NL	NL	NL
Source depth - 8m +		NL	NL	NL	NL	NL	NL	NL
HSL D: Commercial / Industrial								
Source depth - 2m to <4m		NL	NL	30	NL	NL	NL	NL
Source depth - 4m to <8m		NL	NL	30	NL	NL	NL	NL
Source depth - 8m +		NL	NL	35	NL	NL	NL	NL

Notes

To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.

To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction. b:

NL: Not Limiting

a:

TABLE H
PAH
TEST RESULTS (GROUNDWATER SAMPLES)

Analyte	PAH	(µg/L)
	NAPHTHALENE	BENZO(a)PYRENE
Sample Location		
GW1	<0.2	<0.2
GW2	<0.2	<0.2
GW3	<0.2	<0.2
Practical Quantitation Limits (PQL)	0.2	0.2
ANZECC & ARMCANZ a Guidelines for Fresh and	Marine Water Quality (20	00)
Aquatic Ecosystems (Trigger Values)		
Fresh	16	NV
Water for recreational purposes		0.01

Notes

a: Investigation levels apply to typical slightly-moderated disturbed systems.

b: PCB - Arochlor 1242

c: PCB - Arochlor 1254

NV: No Value derived

TABLE I1 CHLORINATED ALKANES TEST RESULTS

Analyte	CHLORINATED ALKANES (µg/L)						
Sample Location	Dichloromethane	Trichloromethane (chloroform)	Trihalomethanes (total)	Tetrachloromethane (carbon tetrachloride)	1.2-Dichloroethane	1.1.2-Trichloroethane	Hexachloroethane
GW1 -	<10	<1	-	<1	<1	<1	-
GW2 -	<10	<1	-	<1	<1	<1	-
GW3 -	<10	<1	-	<1	<1	<1	-
Practical Quantitation Limits (PQL)	10	1	-	1	1	1	-
ANZECC & ARMCANZ a Guidelines for	r Fresh a	nd Marine	Water Qu	ality (2000)			
Aquatic Ecosystems (Trigger Values) Fresh Water	NV	NV	NV	NV	NV	6500	290
Marine Water	NV	NV	NV	NV	NV	1900	NV
Drinking Water	4	3	250	3	3	NV	NV
Notes a: Inv	estigation	levels appl	y to typica	l slightly-mo	derated d	listurbed sy	stems.

a. NV: Investigation levels apply to typical slightly-moderated disturbed systems. No value derived

TABLE 12 CHLORINATED ALKENES TEST RESULTS

	Analyte	CH	LORINATED	ALKENES (µ	g/L)
Sample Location		Chloroethene (vinyl chloride)	1.1-Dichloroethene	1.2-Dichloroethene	Tetrachloroethene (PCE) (Perchloroethene)
GW1	-	<10	<1	-	<1
GW2	-	<10	<1	-	<1
GW3	-	<10	<1	-	<1
Practical Quantitation Li	mits (PQL)	10	1	-	1
ANZECC & ARMCANZ		r Fresh and N	Aarine Water	Quality (200	10)
Fresh Water	,	NV	NV	NV	NV
Marine Water		NV	NV	NV	NV
Drinking Water		0.3	30	60	50
Notes a:	Inv	estigation leve	els apply to ty	pical slightly-	moderated

NV:

Investigation levels apply to typical slightly-moderated

TABLE I3 CHLORINATED BENZENES TEST RESULTS

Analyte			CHLORIN	ATED BENZE	NES (µg/L)		
Sample Location	Chlorobenzene	1.2-Dichlorobenzene	1.3-Dichlorobenzene	1.4-Dichlorobenzene	1.2.3-Trichlorobenzene	1.2.4-Trichlorobenzene	1.3.5-Trichlorobenzene
	<1	<1	<1	<1	<1	<1	-
GW2 -	<1	<1	<1	<1	<1	<1	-
GW3 -	<1	<1	<1	<1	<1	<1	-
Practical Quantitation Limits (PQL)	1	1	1	1	1	1	-
ANZECC & ARMCANZ a Guidelines fo	r Fresh and M	larine Water	Quality (2000)			
Aquatic Ecosystems (Trigger Values) Fresh Water	NV	160	260	60	3	85	NV
Marine Water	NV	NV	NV	NV	NV	20	NV
Drinking Water	300	1500	NV	40	30	30	30
Notes a: Inv	vestigation lev	els apply to typ	pical slightly-m	noderated distu	urbed systems	s.	

Investigation levels apply to typical slightly-moderated disturbed systems.

NV: No value derived

SECTION 149 CERTIFICATES

Cert. No.: PC201302194 Page No: 1 of 17 Date: 20/11/2013 council

APPLICANT S XARRAS Po Box 3247 Marrickville Metro, 2204

PROPERTY 18-26 Faversham Street MARRICKVILLE NSW 2204 Lot 154 DP 761 PROPERTY NO. 8924

REFERENCE

In accordance with the requirements of section 149 of the Environmental Planning and Assessment Act 1979, the following prescribed matters relate to the land at the date of this certificate.

ITEM 1

ABN 52 659 768 527

(1)		The name of each environmental planning instrument that applies to the carrying out o development on the land.						
1.	The	following environme	ental planning instruments apply to the land:					
	•	Marrickville Loca	l Environmental Plan 2011- Amendment 1					
	•	S.E.P.P. No. 6	Number of Storeys in a Building					
	•	S.E.P.P. No. 19	Bushland in Urban Areas					
	•	S.E.P.P. No. 21	Caravan Parks					
	•	S.E.P.P. No. 22	Shops and Commercial Premises					
	•	S.E.P.P. No. 30	Intensive Agricultures					
		S.E.P.P. No. 32	Urban Consolidation (Redevelopment of Urban Land)					
	•	S.E.P.P. No. 33	Hazardous and Offensive Development					
	•	S.E.P.P. No. 50	Canal Estates					
	•	S.E.P.P. No. 53	Transitional Provisions					
	•	S.E.P.P. No. 55	Remediation of Land					
	•	S.E.P.P. No. 62	Sustainable Aquaculture					
	•	S.E.P.P. No. 64	Advertising and Signage					
	•	S.E.P.P. No. 65	Design Quality of Residential Flat Development					

Phone02 9335 2222Fax02 9335 2029TTY02 9335 2025 (hearing impaired)Emailcouncil@marrickville.nsw.gov.auWebsitewww.marrickville.nsw.gov.au

3533

ENGLISH

IMPORTANT

This letter contains important information. If you do not understand it, please ask a relative or friend to translate it or come to Council and discuss the letter with Council's staff using the Telephone Interpreter Service.

GREEK

ΣΗΜΑΝΤΙΚΟ

Αυτή η επιστολή περιέχει σημαντικές πληροφορίες. Αν δεν τις καταλαβαίνετε, παρακαλείστε να ζητήσετε από ένα συγγενή ή φίλο να σας τις μεταφράσει ή να έλθετε στα γραφεία της Δημαρχίας και να συζητήσετε την επιστολή με προσωπικό της Δημαρχίας χρησιμοποιώντας την Τηλεφωνική Υπηρεσία Διερμηνέων.

PORTUGUESE

IMPORTANTE

Este carta contém informação importante. Se não o compreender peça a uma pessoa de família ou a um/a amigo/a para o traduzir ou venha até à Câmara Municipal (Council) para discutir o assunto através do Serviço de Intérpretes pelo Telefone (Telephone Interpreter Service).

ARABIC

تحتوي هذه الرسالة معلومات هامة. فإذا لم تستوعبوها يرجى أن تطلبوا من أحد أقربائكم أو أصدقائكم شرحها لكم، أو تفضلوا إلى البلدية واجلبوا الرسالة معكم لكي تناقشوها مع أحد موظفي البلدية من خلال الإستعانة بخدمة الترجمة الهاتفية.

VIETNAMESE

THÔNG TIN QUAN TRỌNG

Nội dung thư này gồm có các thông tin quan trọng. Nếu đọc không hiểu, xin quý vị nhờ thân nhân hay bạn bè dịch giùm hoặc đem đến Hội đồng Thành phố để thảo luận với nhân viên qua trung gian Dịch vụ Thông dịch qua Điện thoại.

MANDARIN

重要资料

本信写有重要资料。如果不明白,请亲友为您翻译, 或到市政府来,通过电话传译服务,与市政府工作人 员讨论此信。

Cert. No: PC201302194 Page No: 2 of 17

- S.E.P.P. (Housing for Seniors or People with a Disability) 2004
 - S.E.P.P. (Building Sustainability Index: BASIX) 2004
- S.E.P.P. (Major Development) 2005
- S.E.P.P. (Mining, Petroleum Production and Extractive Industries) 2007
- S.E.P.P. (Temporary Structures) 2007
- S.E.P.P. (Infrastructure) 2007
- S.E.P.P. (Exempt and Complying Development Codes) 2008
- S.E.P.P. (Affordable Rental Housing) 2009

Any enquiries regarding these State Planning Policies should be directed to the Department of Planning on: 1300 305 695 or 02 9228 6333. Information can also be obtained from the Department's website at <u>http://www.planning.nsw.gov.au</u>

- (1) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).
- 2. The following proposed environmental planning instruments apply to the land:
 - None

(2) The name of each development control plan that applies to the carrying out of development on the land.

- 3. The following development control plans (D.C.P's) apply to the land:
 - Marrickville Development Control Plan 2011

ITEM 2

Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):
(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),
(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Cert. No: PC201302194 Page No: 3 of 17

(c)	the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,
(d)	the purposes for which the instrument provides that development is prohibited within the zone,
(e)	whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed,
 (f)	whether the land includes or comprises critical habitat,
(g)	whether the land is in a conservation area (however described),
(h)	whether an item of environmental heritage (however described) is situated on the land.

Item 2 (a), (b), (c) & (d) - Zoning and Land use table

IN1 - General Industrial

1 Objectives of zone

- To provide a wide range of industrial and warehouse land uses.
- To encourage employment opportunities.
- To minimise any adverse effect of industry on other land uses.
- To support and protect industrial land for industrial uses.
- To protect industrial land in proximity to Sydney Airport and Port Botany.
- To enable a purpose built dwelling house to be used in certain circumstances as a dwelling house.
- 2 Permitted without consent

Home occupations

3 Permitted with consent

Agricultural produce industries; Depots; Dwelling houses; Freight transport facilities; General industries; Industrial training facilities; Intensive plant agriculture; Kiosks; Light industries; Markets; Neighbourhood shops; Roads; Take away food and drink premises; Timber yards; Warehouse or distribution centres; Any other development not specified in item 2 or 4

4 Prohibited

Cert. No: PC201302194 Page No: 4 of 17

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Child care centres; Commercial premises; Community facilities; Correctional centres; Eco-tourist facilities; Educational establishments; Environmental facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Function centres; Health services facilities; Heavy industrial storage establishments; Heavy industries; Helipads; Highway service centres; Home occupations (sex services); Information and education facilities; Jetties; Marinas; Mooring pens; Moorings; Offensive industries; Open cut mining; Passenger transport facilities; Places of public worship; Port facilities; Public administration buildings; Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Research stations; Residential accommodation; Respite day care centres; Nestricted premises; Rural industries; Tourist and visitor accommodation; Transport depots; Veterinary hospitals; Water recreation structures; Water supply systems; Wholesale supplies

Item 2 (e) - Minimum land dimensions

There are NO minimum land dimensions for the erection of a dwelling house on the land. All applications for the erection of a dwelling house will be assessed in accordance with the Environmental Planning and Assessment Act, 1979.

Item 2 (f) - Critical habitat

The land DOES NOT include or comprise critical habitat.

Item 2 (g) - Conservation Area

The land IS NOT within a heritage conservation area referred to in Schedule 5 of Marrickville Local Environmental Plan 2011

Item 2 (h) - Heritage Item

An item of environmental heritage IS NOT situated on the land under Marrickville Local Environmental Plan 2011

Cert. No: PC201302194 Page No: 5 of 17

ITEM 2A

Zoning and land use under State Environmental Planning Policy (Sydney Region Growth Centres) 2006

To the extent that the land is within any zone (however described) under: (a) Part 3 of the <u>State Environmental Planning Policy (Sydney Region Growth Centres)</u> <u>2006</u> (the 2006 SEPP), or

(b) a Precinct Plan (within the meaning of the 2006 SEPP), or

(c) a proposed Precinct Plan that is or has been the subject of community consultation or on public exhibition under the Act,

the particulars referred to in clause 2 (a)-(h) in relation to that land (with a reference to "the instrument" in any of those paragraphs being read as a reference to Part 3 of the 2006 SEPP, or the Precinct Plan or proposed Precinct Plan, as the case requires).

The land IS NOT land to which State Environmental Planning Policy (Sydney Region Growth Centres) 2006 applies.

ITEM 3

Complying development

(1) Whether or not the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (c) and (d) and 1.19 of <u>State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.</u>

(2) If complying development may not be carried out on that land because of the provisions of clauses 1.17A (c) and (d) and 1.19 of that Policy, the reasons why it may not be carried out under that clause.

General Housing Code

No. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may not be carried out on this land.

The land is excluded land identified as being within ANEF 25 or higher, unless the development is for the erection of ancillary development

The land is excluded land identified on an Acid Sulfate Soils map as being Class 2

Cert. No: PC201302194 Page No: 6 of 17

Housing Alterations Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

General Development Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

General Commercial and Industrial Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

Subdivisions Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

Demolitions Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

ITEM 4

Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the <u>Coastal</u> <u>Protection Act 1979</u>, but only to the extent that the council has been so notified by the Department of Services, Technology and Administration.

No.

Cert. No: PC201302194 Page No: 7 of 17

ITEM 4A

Certain information relating to beaches and coasts

(1) In relation to a costal council – whether an order has been made under Part 4D of the <u>Coastal Protection Act 1979</u> in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

NO order has been made under Part 4D of the Coastal Protection Act 1979.

(2) In relation to a costal council:

(a) whether the council has been notified under section 55X of the <u>Coastal Protection Act</u> <u>1979</u> that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

Council HAS NOT been notified under Section 55X of the Coastal Protection Act 1979.

(b) if works have been so placed – whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

Not Applicable

(3) (Repealed)

ITEM 4B

Annual charges under Local Government Act 1993 for coastal protection services that relate to the existing coastal protection works

In relation to a coastal council – whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of the *Local Government Act 1993* for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

The land IS NOT subject to any annual charges under Section 496B of the *Local Government* Act 1993.

Cert. No: PC201302194 Page No: 8 of 17

ITEM 5

Mine subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

No.

ITEM 6

Road widening and road realignment

- Whether or not the land is affected by any road widening or road realignment under:
- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

The land IS NOT affected by a road widening or road realignment under:

- (i) Part 3 Division 2 of the Roads Act 1993
- (ii) any environmental planning instrument; or
- (iii) any resolution of the Council

ITEM 7

Council and other public authority policies on hazard risk restrictions

Whether or not the land is affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

- Council HAS adopted by resolution and in accordance with S.72 of the Environmental Planning & Assessment Act, 1979 a development control plan incorporating Council's policy on contaminated land. The Plan has been prepared substantially in accordance with State Environmental Planning Policy No. 55, and the Contaminated Land Planning Guidelines. This policy may affect development of land:
 - (a) which is affected by contamination;
 - (b) which has been used for certain purposes;
 - (c) in respect of which there is not sufficient information about contamination;

Cert. No: PC201302194 Page No: 9 of 17

(d) which is proposed to be used for certain purposes;

(e) in other circumstances contained in the development control plan and policy;

and in some cases may restrict the development of land.

- The land IS identified as being subject to acid sulfate soil risk under clause 6.2 of Marrickville Local Environmental Plan 2011. Development on land that is subject to acid sulphate soil risk requires development consent and the preparation of an acid sulphate soils management plan subject to a preliminary assessment of the proposed works prepared in accordance with the Acid Sulfate Soils Manual. Development consent is not required where the works involve the disturbance of less than 1 tonne of soil or are not likely to lower the watertable.
- Council HAS NOT by resolution (aside from the matters raised in the above item(s)) adopted a policy to restrict the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulfate soils or any other risk (other than flooding).
- Council HAS received no notification of the type described in item 7(b) from a public authority
 of a policy adopted by that authority that restricts the development of the land because of land
 slip, bushfire, tidal inundation, subsidence, acid sulfate soils or any other risk (other than
 flooding).

ITEM 7A

Flood related development controls information

(1) Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

Yes.

(2) Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

Yes.

(3) Words and expressions in this clause have the same meaning as in the instrument set out in the Schedule to the <u>Standard Instrument (Local Environmental Plan) Order</u> 2006.
Cert. No: PC201302194 Page No: 10 of 17

ITEM 8

Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

The land IS NOT reserved, in part or whole, for acquisition by a public authority, as referred to in section 27 of the Act, under:

- (i) any environmental planning instrument
- (ii) deemed environmental planning instrument; or
- (iii) draft environmental planning instrument

ITEM 9

Contributions plans

The name of each contributions plan applying to the land.

Marrickville Section 94 Contributions Plan 2004.

ITEM 9A

Biodiversity certified land

If the land is biodiversity certified land (within the meaning of <u>Part 7AA of the Threatened</u> <u>Species Conservation Act 1995</u>) a statement to that effect.

The land IS NOT biodiversity certified land (within the meaning of Part 7AA of the Threatened Species Conservation Act 1995).

ITEM 10

Biobanking agreements

If the land is land to which a biobanking agreement under <u>Part 7A of the Threatened Species</u> <u>Conservation Act 1995</u> relates, a statement to that effect (but only if the council has been notified of the existence of the agreement by the Director-General of the Department of Environment, Climate Change and Water).

The land IS NOT land to which a biobanking agreement under Part 7A of the Threatened Species Conservation Act 1995 relates.

Cert. No: PC201302194 Page No: 11 of 17

ITEM 11

Bush fire prone land

If any of the land is bush fire prone land (as defined in the Act), a statement that all or, as the case may be, some of the land is bush fire prone land.

If none of the land is bush fire prone land, a statement to that effect.

The land IS NOT bush fire prone land.

ITEM 12

Property vegetation plans

If the land is land to which a property vegetation plan under the <u>Native Vegetation Act 2003</u> applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

No.

ITEM 13

Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the <u>Trees (Disputes Between Neighbours) Act 2006</u> to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

No.

ITEM 14

Directions under Part 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

Cert. No: PC201302194 Page No: 12 of 17

ITEM 15

Site compatibility certificates and conditions for seniors housing

If the land is land to which <u>State Environmental Planning Policy (Housing for Seniors or</u> <u>People with a Disability) 2004</u> applies:

- (a) a statement of whether there is a current site compatibility certificate (seniors housing), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:
 - (i) the period for which the certificate is current, and
 - (ii) that a copy may be obtained from the head office of the Department of Planning, and
- (b) a statement setting out any terms of a kind referred to in clause 18 (2) of that Policy that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.

Item 15(a)

There IS NOT a current site compatibility certificate (seniors housing) relating to the land

Item 15(b)

There ARE NO applicable terms of a kind referred to in clause 18(2) of that Policy that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land

ITEM 16

Site compatibility certificate for Infrastructure

A statement of whether there is a valid site compatibility certificate (infrastructure), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:

(a) the period for which the certificate is valid, and

(b) that a copy may be obtained from the head office of the Department of Planning.

There IS NOT a current site compatibility certificate (infrastructure) relating to the land

Cert. No: PC201302194 Page No: 13 of 17

ITEM 17

Site compatibility certificate and conditions affecting affordable rental housing

- A statement of whether there is a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:
 - (a) the period for which the certificate is current, and
 - (b) that a copy may be obtained from the head office of the Department of Planning.
- (2) A statement setting out any terms of a kind referred to in clause 17 (1) or 38 (1) of <u>State</u> <u>Environmental Planning Policy (Affordable Rental Housing) 2009</u> that have been imposed as a condition of consent to a development application in respect of the land.

Item 17(1)

There IS NOT a current site compatibility certificate (affordable rental housing) relating to the land

Item 17(2)

There ARE NO applicable terms of a kind referred to in clause 17(1) or 38(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land

ITEM 18

Paper subdivision information

 The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

Nil.

(2) The date of any subdivision order that applies to the land.

Not applicable.

(3) Words and expressions used in this clause have the same meaning as they have in Part 16C of this Regulation.

Not Applicable.

Cert. No: PC201302194 Page No: 14 of 17

ITEM 19

Site verification certificates

 A statement of whether there is a current site verification certificate, of which council is aware, in respect of the land and, if there is a certificate, the statement is to include:

a) the matter certified by the certificate, and

Note: A site verification certificate sets out the Director-General's opinion as to whether the land concerned is or is not biophysical strategic agricultural land or critical industry cluster land – see Division 3 of Part 4AA of the *State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.*

- b) the date on which the certificate ceases to be current (if any), and
- c) that a copy may be obtained from the head office of the Department of Planning and Infrastructure

Not applicable.

OTHER ITEMS (i)

Section 23 exemption or Section 24 authorisation

Whether an exemption under Section 23 or an authorisation under section 24 of the <u>Nation</u> <u>Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> No 1 has been issued by the Co-ordinator General in relation to the land.

An exemption under Section 23 or an authorisation under Section 24 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009 No 1 HAS NOT been issued by the Coordinator General in relation to the land.

Cert. No: PC201302194 Page No: 15 of 17

OTHER ITEMS (ii)

Matters arising under the Contaminated Land Management Act 1997

Section 59(2) of the <u>Contaminated Land Management Act 1997</u> prescribes the following additional matters that are to be specified in a planning certificate:
(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of the Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of the Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of the Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

Cert. No: PC201302194 Page No: 16 of 17

ADDITIONAL INFORMATION PURSUANT TO S.149(5) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979.

a) The property IS NOT listed on the State Heritage Register.

The Register is a list of places and items of State heritage significance which has been endorsed by the NSW Heritage Council and the Assistant Minister for Infrastructure and Planning (Planning Administration), and came into effect through a legislative amendment of the Heritage Act 1977 on 2 April 1999.

Further information about items on the State Heritage Register can be obtained from the NSW Heritage Office web site at www.heritage.nsw.gov.au http://www.heritage.nsw.gov.au

b) Australian Noise Exposure Forecast ANEF 2033:

Some land within the Marrickville Local Government area is subject to aircraft noise associated with Sydney Airport. Council has maps which indicate the land that is subject to noise exposure from aircraft and which contain information as to future levels of noise and related matters. Development within these areas may require noise and acoustic attenuation treatment. If you consider that the subject land is, or is likely to be affected by aircraft noise, or if you wish to ascertain whether the subject land is, or is likely to be affected by aircraft noise, please contact the Development and Environmental Services Division of Council on 9335 2222.

For further information concerning the Australian Noise Exposure Forecast (ANEF), as it relates to Sydney Airport and the Marrickville Local Government area please contact Airservices Australia, Customer and Community Relations, P.O. Box 211, Mascot, NSW 1460 or telephone 1300 302 240.

c) Contaminated Land:

Marrickville Development Control Plan 2011 lists sources of information for investigating potential land contamination, including information that the Council may possess. Persons should make their own enquiries in accordance with the procedures specified in Marrickville DCP. The Council can provide access to information in Council's possession in relation to the land use history for a particular parcel of land.

d) Flooding:

Council has undertaken a flood drainage study of the catchment area within which this property is located. The results of this study indicate that the property may be affected by local flooding arising from the surcharge of the local drainage system. Council may place restrictions on the minimum floor levels of new building works where it is considered that the flood level so requires. New building works may be required to be constructed from flood-compatible materials. Therefore, it is recommended that interested

Cert. No: PC201302194 Page No: 17 of 17

persons make and rely upon their own enquiries as to the likelihood and extent of flooding affecting this property. Development controls and guidelines for development within flood affected areas are within section 2.22 of Marrickville Development Control Plan 2011. Further information is available from Council's Planning and Environmental Services Directorate on ph. 9335 2222.

Information provided in this planning certificate is in accordance with the matters prescribed under Schedule 4 of the Environmental Planning and Assessment Regulation 2000.

When information pursuant to Section 149 (5) is requested, the Council is under no obligation to furnish any particular information pursuant to that Section. The absence of any reference to any matters affecting the land shall not imply that the land is not affected by any matter not referred to in this Certificate.

Council draws your attention to Section 149 (6) which states that a Council shall not incur any liability in respect of any advice provided in good faith pursuant to subsection (5).

Please contact the Planning Services Section for further information about any instruments or affectations referred to in the Certificate.

MARCUS ROWAN MANAGER, PLANNING SERVICES

Cert. No.: PC201302195 Page No: 1 of 17 Date: 20/11/2013 council

APPLICANT S XARRAS Po Box 3247 Marrickville Metro, 2204

PROPERTY 18-26 Faversham Street MARRICKVILLE NSW 2204 Lot 155 DP 761 **PROPERTY NO.** 8924

REFERENCE

In accordance with the requirements of section 149 of the Environmental Planning and Assessment Act 1979, the following prescribed matters relate to the land at the date of this certificate.

ITEM 1

ABN 52 659 768 527

(1)	The name of each environmental planning instrument that applies to the carrying out of development on the land.			
1.	The following environmental planning instruments apply to the land:			
	Marrickville Local Environmental Plan 2011- Amendment 1			
	•	S.E.P.P. No. 6	Number of Storeys in a Building	
	•	S.E.P.P. No. 19	Bushland in Urban Areas	
	•	S.E.P.P. No. 21	Caravan Parks	
	•	S.E.P.P. No. 22	Shops and Commercial Premises	
	•	S.E.P.P. No. 30	Intensive Agricultures	
	•	S.E.P.P. No. 32	Urban Consolidation (Redevelopment of Urban Land)	
	•	S.E.P.P. No. 33	Hazardous and Offensive Development	
	•	S.E.P.P. No. 50	Canal Estates	
	•	S.E.P.P. No. 53	Transitional Provisions	
	•	S.E.P.P. No. 55	Remediation of Land	
		S.E.P.P. No. 62	Sustainable Aquaculture	

S.E.P.P. No. 64 Advertising and Signage

S.E.P.P. No. 65 Design Quality of Residential Flat Development

 Phone
 02 9335 2222

 Fax
 02 9335 2029

 TTY
 02 9335 2025 (hearing impaired)

 Email
 council@marrickville.nsw.gov.au

 Website
 www.marrickville.nsw.gov.au

ENGLISH

IMPORTANT

This letter contains important information. If you do not understand it, please ask a relative or friend to translate it or come to Council and discuss the letter with Council's staff using the Telephone Interpreter Service.

GREEK

ΣΗΜΑΝΤΙΚΟ

Αυτή η επιστολή περιέχει σημαντικές πληροφορίες. Αν δεν τις καταλαβαίνετε, παρακαλείστε να ζητήσετε από ένα συγγενή ή φίλο να σας τις μεταφράσει ή να έλθετε στα γραφεία της Δημαρχίας και να συζητήσετε την επιστολή με προσωπικό της Δημαρχίας χρησιμοποιώντας την Τηλεφωνική Υπηρεσία Διερμηνέων.

PORTUGUESE

IMPORTANTE

Este carta contém informação importante. Se não o compreender peça a uma pessoa de família ou a um/a amigo/a para o traduzir ou venha até à Câmara Municipal (Council) para discutir o assunto através do Serviço de Intérpretes pelo Telefone (Telephone Interpreter Service).

ARABIC

تحتوي هذه الرسالة معلومات هامة. فإذا لم تستوعبوها يرجى أن تطلبوا من أحد أقربائكم أو أصدقائكم شرحها لكم، أو تفضلوا إلى البلدية واجلبوا الرسالة معكم لكي تناقشوها مع أحد موظفي البلدية من خلال الإستعانة بخدمة الترجمة الهاتفية.

VIETNAMESE

THÔNG TIN QUAN TRỌNG

Nội dung thư này gồm có các thông tin quan trọng. Nếu đọc không hiểu, xin quý vị nhờ thân nhân hay bạn bè dịch giùm hoặc đem đến Hội đồng Thành phố để thảo luận với nhân viên qua trung gian Dịch vụ Thông dịch qua Điện thoại.

MANDARIN

重要资料

本信写有重要资料。如果不明白,请亲友为您翻译, 或到市政府来,通过电话传译服务,与市政府工作人 员讨论此信。

Cert. No: PC201302195 Page No: 2 of 17

- S.E.P.P. (Housing for Seniors or People with a Disability) 2004
 - S.E.P.P. (Building Sustainability Index: BASIX) 2004
- S.E.P.P. (Major Development) 2005
- S.E.P.P. (Mining, Petroleum Production and Extractive Industries) 2007
- S.E.P.P. (Temporary Structures) 2007
- S.E.P.P. (Infrastructure) 2007
- S.E.P.P. (Exempt and Complying Development Codes) 2008
- S.E.P.P. (Affordable Rental Housing) 2009

Any enquiries regarding these State Planning Policies should be directed to the Department of Planning on: 1300 305 695 or 02 9228 6333. Information can also be obtained from the Department's website at <u>http://www.planning.nsw.gov.au</u>

- (1) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).
- 2. The following proposed environmental planning instruments apply to the land:
 - None

(2) The name of each development control plan that applies to the carrying out of development on the land.

- 3. The following development control plans (D.C.P's) apply to the land:
 - Marrickville Development Control Plan 2011

ITEM 2

Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

- (a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),
- (b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Cert. No: PC201302195 Page No: 3 of 17

(c)	the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,
(d)	the purposes for which the instrument provides that development is prohibited within the zone,
(e)	whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed,
(f)	whether the land includes or comprises critical habitat,
(g)	whether the land is in a conservation area (however described),
(h)	whether an item of environmental heritage (however described) is situated on the land.

Item 2 (a), (b), (c) & (d) - Zoning and Land use table

IN1 - General Industrial

1 Objectives of zone

- To provide a wide range of industrial and warehouse land uses.
- To encourage employment opportunities.
- To minimise any adverse effect of industry on other land uses.
- · To support and protect industrial land for industrial uses.
- To protect industrial land in proximity to Sydney Airport and Port Botany.
- To enable a purpose built dwelling house to be used in certain circumstances as a dwelling house.
- 2 Permitted without consent

Home occupations

3 Permitted with consent

Agricultural produce industries; Depots; Dwelling houses; Freight transport facilities; General industries; Industrial training facilities; Intensive plant agriculture; Kiosks; Light industries; Markets; Neighbourhood shops; Roads; Take away food and drink premises; Timber yards; Warehouse or distribution centres; Any other development not specified in item 2 or 4

4 Prohibited

Cert. No: PC201302195 Page No: 4 of 17

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Child care centres; Commercial premises; Community facilities; Correctional centres; Eco-tourist facilities; Educational establishments; Environmental facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Function centres; Health services facilities; Heavy industrial storage establishments; Heavy industries; Helipads; Highway service centres; Home occupations (sex services); Information and education facilities; Jetties; Marinas; Mooring pens; Moorings; Offensive industries; Open cut mining; Passenger transport facilities; Places of public worship; Port facilities; Public administration buildings; Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Research stations; Residential accommodation; Respite day care centres; Neterinary hospitals; Water recreation structures; Water supply systems; Wholesale supplies

Item 2 (e) - Minimum land dimensions

There are NO minimum land dimensions for the erection of a dwelling house on the land. All applications for the erection of a dwelling house will be assessed in accordance with the Environmental Planning and Assessment Act, 1979.

Item 2 (f) - Critical habitat

The land DOES NOT include or comprise critical habitat.

Item 2 (g) - Conservation Area

The land IS NOT within a heritage conservation area referred to in Schedule 5 of Marrickville Local Environmental Plan 2011

Item 2 (h) - Heritage Item

An item of environmental heritage IS NOT situated on the land under Marrickville Local Environmental Plan 2011

Cert. No: PC201302195 Page No: 5 of 17

ITEM 2A

Zoning and land use under State Environmental Planning Policy (Sydney Region Growth Centres) 2006

To the extent that the land is within any zone (however described) under: (a) Part 3 of the <u>State Environmental Planning Policy (Sydney Region Growth Centres)</u> <u>2006</u> (the 2006 SEPP), or

(b) a Precinct Plan (within the meaning of the 2006 SEPP), or

(c) a proposed Precinct Plan that is or has been the subject of community consultation or on public exhibition under the Act,

the particulars referred to in clause 2 (a)-(h) in relation to that land (with a reference to "the instrument" in any of those paragraphs being read as a reference to Part 3 of the 2006 SEPP, or the Precinct Plan or proposed Precinct Plan, as the case requires).

The land IS NOT land to which State Environmental Planning Policy (Sydney Region Growth Centres) 2006 applies.

ITEM 3

Complying development

(1) Whether or not the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (c) and (d) and 1.19 of <u>State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.</u>

(2) If complying development may not be carried out on that land because of the provisions of clauses 1.17A (c) and (d) and 1.19 of that Policy, the reasons why it may not be carried out under that clause.

General Housing Code

No. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may not be carried out on this land.

The land is excluded land identified as being within ANEF 25 or higher, unless the development is for the erection of ancillary development

The land is excluded land identified on an Acid Sulfate Soils map as being Class 2

Cert. No: PC201302195 Page No: 6 of 17

Housing Alterations Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

General Development Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

General Commercial and Industrial Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

Subdivisions Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

Demolitions Code

Yes. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

ITEM 4

Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the <u>Coastal</u> <u>Protection Act 1979</u>, but only to the extent that the council has been so notified by the Department of Services, Technology and Administration.

No.

Cert. No: PC201302195 Page No: 7 of 17

ITEM 4A

Certain information relating to beaches and coasts

(1) In relation to a costal council – whether an order has been made under Part 4D of the <u>Coastal Protection Act 1979</u> in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

NO order has been made under Part 4D of the Coastal Protection Act 1979.

(2)	In relation to a costal council:
(a)	whether the council has been notified under section 55X of the <u>Coastal Protection Act</u> <u>1979</u> that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

Council HAS NOT been notified under Section 55X of the Coastal Protection Act 1979.

(b) if works have been so placed – whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

Not Applicable

(3) (Repealed)

ITEM 4B

Annual charges under <u>Local Government Act 1993</u> for coastal protection services that relate to the existing coastal protection works

In relation to a coastal council – whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of the *Local Government Act 1993* for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

The land IS NOT subject to any annual charges under Section 496B of the *Local Government* Act 1993.

Cert. No: PC201302195 Page No: 8 of 17

ITEM 5

Mine subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

No.

ITEM 6

Road widening and road realignment

- Whether or not the land is affected by any road widening or road realignment under:
- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

The land IS NOT affected by a road widening or road realignment under:

- (i) Part 3 Division 2 of the Roads Act 1993
- (ii) any environmental planning instrument; or
- (iii) any resolution of the Council

ITEM 7

Council and other public authority policies on hazard risk restrictions

Whether or not the land is affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

- Council HAS adopted by resolution and in accordance with S.72 of the Environmental Planning & Assessment Act, 1979 a development control plan incorporating Council's policy on contaminated land. The Plan has been prepared substantially in accordance with State Environmental Planning Policy No. 55, and the Contaminated Land Planning Guidelines. This policy may affect development of land:
 - (a) which is affected by contamination;
 - (b) which has been used for certain purposes;
 - (c) in respect of which there is not sufficient information about contamination;

Cert. No: PC201302195 Page No: 9 of 17

(d) which is proposed to be used for certain purposes;

(e) in other circumstances contained in the development control plan and policy;

and in some cases may restrict the development of land.

- The land IS identified as being subject to acid sulfate soil risk under clause 6.2 of Marrickville Local Environmental Plan 2011. Development on land that is subject to acid sulphate soil risk requires development consent and the preparation of an acid sulphate soils management plan subject to a preliminary assessment of the proposed works prepared in accordance with the Acid Sulfate Soils Manual. Development consent is not required where the works involve the disturbance of less than 1 tonne of soil or are not likely to lower the watertable.
- Council HAS NOT by resolution (aside from the matters raised in the above item(s)) adopted a
 policy to restrict the development of the land because of the likelihood of land slip, bushfire,
 tidal inundation, subsidence, acid sulfate soils or any other risk (other than flooding).
- Council HAS received no notification of the type described in item 7(b) from a public authority
 of a policy adopted by that authority that restricts the development of the land because of land
 slip, bushfire, tidal inundation, subsidence, acid sulfate soils or any other risk (other than
 flooding).

ITEM 7A

Flood related development controls information

(1) Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

Yes.

(2) Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

Yes.

(3) Words and expressions in this clause have the same meaning as in the instrument set out in the Schedule to the <u>Standard Instrument (Local Environmental Plan) Order</u> 2006.

Cert. No: PC201302195 Page No: 10 of 17

ITEM 8

Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

The land IS NOT reserved, in part or whole, for acquisition by a public authority, as referred to in section 27 of the Act, under:

- (i) any environmental planning instrument
- (ii) deemed environmental planning instrument; or
- (iii) draft environmental planning instrument

ITEM 9

Contributions plans

The name of each contributions plan applying to the land.

Marrickville Section 94 Contributions Plan 2004.

ITEM 9A

Biodiversity certified land

If the land is biodiversity certified land (within the meaning of <u>Part 7AA of the Threatened</u> <u>Species Conservation Act 1995</u>) a statement to that effect.

The land IS NOT biodiversity certified land (within the meaning of Part 7AA of the Threatened Species Conservation Act 1995).

ITEM 10

Biobanking agreements

If the land is land to which a biobanking agreement under <u>Part 7A of the Threatened Species</u> <u>Conservation Act 1995</u> relates, a statement to that effect (but only if the council has been notified of the existence of the agreement by the Director-General of the Department of Environment, Climate Change and Water).

The land IS NOT land to which a biobanking agreement under Part 7A of the Threatened Species Conservation Act 1995 relates.

Cert. No: PC201302195 Page No: 11 of 17

ITEM 11

Bush fire prone land

If any of the land is bush fire prone land (as defined in the Act), a statement that all or, as the case may be, some of the land is bush fire prone land.

If none of the land is bush fire prone land, a statement to that effect.

The land IS NOT bush fire prone land.

ITEM 12

Property vegetation plans

If the land is land to which a property vegetation plan under the <u>Native Vegetation Act 2003</u> applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

No.

ITEM 13

Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the <u>Trees (Disputes Between Neighbours) Act 2006</u> to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

No.

ITEM 14

Directions under Part 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

Cert. No: PC201302195 Page No: 12 of 17

ITEM 15

Site compatibility certificates and conditions for seniors housing

If the land is land to which <u>State Environmental Planning Policy (Housing for Seniors or</u> <u>People with a Disability) 2004</u> applies:

- (a) a statement of whether there is a current site compatibility certificate (seniors housing), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:
 - (i) the period for which the certificate is current, and
 - (ii) that a copy may be obtained from the head office of the Department of Planning, and
- (b) a statement setting out any terms of a kind referred to in clause 18 (2) of that Policy that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.

Item 15(a)

There IS NOT a current site compatibility certificate (seniors housing) relating to the land

Item 15(b)

There ARE NO applicable terms of a kind referred to in clause 18(2) of that Policy that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land

ITEM 16

Site compatibility certificate for Infrastructure

A statement of whether there is a valid site compatibility certificate (infrastructure), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:

(a) the period for which the certificate is valid, and

(b) that a copy may be obtained from the head office of the Department of Planning.

There IS NOT a current site compatibility certificate (infrastructure) relating to the land

Cert. No: PC201302195 Page No: 13 of 17

ITEM 17

Site compatibility certificate and conditions affecting affordable rental housing

- A statement of whether there is a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:
 - (a) the period for which the certificate is current, and
 - (b) that a copy may be obtained from the head office of the Department of Planning.
- (2) A statement setting out any terms of a kind referred to in clause 17 (1) or 38 (1) of <u>State</u> <u>Environmental Planning Policy (Affordable Rental Housing) 2009</u> that have been imposed as a condition of consent to a development application in respect of the land.

Item 17(1)

There IS NOT a current site compatibility certificate (affordable rental housing) relating to the land

Item 17(2)

There ARE NO applicable terms of a kind referred to in clause 17(1) or 38(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land

ITEM 18

Paper subdivision information

 The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

Nil.

(2) The date of any subdivision order that applies to the land.

Not applicable.

(3) Words and expressions used in this clause have the same meaning as they have in Part 16C of this Regulation.

Not Applicable.

Cert. No: PC201302195 Page No: 14 of 17

ITEM 19

Site verification certificates

- (1) A statement of whether there is a current site verification certificate, of which council is aware, in respect of the land and, if there is a certificate, the statement is to include:
- a) the matter certified by the certificate, and

Note: A site verification certificate sets out the Director-General's opinion as to whether the land concerned is or is not biophysical strategic agricultural land or critical industry cluster land – see Division 3 of Part 4AA of the *State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.*

- b) the date on which the certificate ceases to be current (if any), and
- c) that a copy may be obtained from the head office of the Department of Planning and Infrastructure

Not applicable.

OTHER ITEMS (i)

Section 23 exemption or Section 24 authorisation

Whether an exemption under Section 23 or an authorisation under section 24 of the <u>Nation</u> <u>Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> No 1 has been issued by the Co-ordinator General in relation to the land.

An exemption under Section 23 or an authorisation under Section 24 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009 No 1 HAS NOT been issued by the Coordinator General in relation to the land.

Cert. No: PC201302195 Page No: 15 of 17

OTHER ITEMS (ii)

Matters arising under the Contaminated Land Management Act 1997

the date when the certificate is issued,

Section 59(2) of the <u>Contaminated Land Management Act 1997</u> prescribes the following additional matters that are to be specified in a planning certificate:
(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of the Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of the Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of the Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

Cert. No: PC201302195 Page No: 16 of 17

ADDITIONAL INFORMATION PURSUANT TO S.149(5) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979.

a) The property IS NOT listed on the State Heritage Register.

The Register is a list of places and items of State heritage significance which has been endorsed by the NSW Heritage Council and the Assistant Minister for Infrastructure and Planning (Planning Administration), and came into effect through a legislative amendment of the Heritage Act 1977 on 2 April 1999.

Further information about items on the State Heritage Register can be obtained from the NSW Heritage Office web site at www.heritage.nsw.gov.au http://www.heritage.nsw.gov.au

b) Australian Noise Exposure Forecast ANEF 2033:

Some land within the Marrickville Local Government area is subject to aircraft noise associated with Sydney Airport. Council has maps which indicate the land that is subject to noise exposure from aircraft and which contain information as to future levels of noise and related matters. Development within these areas may require noise and acoustic attenuation treatment. If you consider that the subject land is, or is likely to be affected by aircraft noise, or if you wish to ascertain whether the subject land is, or is likely to be affected by aircraft noise, please contact the Development and Environmental Services Division of Council on 9335 2222.

For further information concerning the Australian Noise Exposure Forecast (ANEF), as it relates to Sydney Airport and the Marrickville Local Government area please contact Airservices Australia, Customer and Community Relations, P.O. Box 211, Mascot, NSW 1460 or telephone 1300 302 240.

c) Contaminated Land:

Marrickville Development Control Plan 2011 lists sources of information for investigating potential land contamination, including information that the Council may possess. Persons should make their own enquiries in accordance with the procedures specified in Marrickville DCP. The Council can provide access to information in Council's possession in relation to the land use history for a particular parcel of land.

d) Flooding:

Council has undertaken a flood drainage study of the catchment area within which this property is located. The results of this study indicate that the property may be affected by local flooding arising from the surcharge of the local drainage system. Council may place restrictions on the minimum floor levels of new building works where it is considered that the flood level so requires. New building works may be required to be constructed from flood-compatible materials. Therefore, it is recommended that interested

Cert. No: PC201302195 Page No: 17 of 17

persons make and rely upon their own enquiries as to the likelihood and extent of flooding affecting this property. Development controls and guidelines for development within flood affected areas are within section 2.22 of Marrickville Development Control Plan 2011. Further information is available from Council's Planning and Environmental Services Directorate on ph. 9335 2222.

Information provided in this planning certificate is in accordance with the matters prescribed under Schedule 4 of the Environmental Planning and Assessment Regulation 2000.

When information pursuant to Section 149 (5) is requested, the Council is under no obligation to furnish any particular information pursuant to that Section. The absence of any reference to any matters affecting the land shall not imply that the land is not affected by any matter not referred to in this Certificate.

Council draws your attention to Section 149 (6) which states that a Council shall not incur any liability in respect of any advice provided in good faith pursuant to subsection (5).

Please contact the Planning Services Section for further information about any instruments or affectations referred to in the Certificate.

MARCUS ROWAN MANAGER, PLANNING SERVICES

Cert. No.: PC201302185 Page No: 1 of 17 Date: 20/11/2013 council

APPLICANT S XARRAS Po Box 3247 Marrickville Metro, 2204

PROPERTY 18-26 Faversham Street MARRICKVILLE NSW 2204 Lot 153 DP 761 **PROPERTY NO.** 8924

REFERENCE

In accordance with the requirements of section 149 of the Environmental Planning and Assessment Act 1979, the following prescribed matters relate to the land at the date of this certificate.

ITEM 1

ABN 52 659 768 527

(1)	The name of each environmental planning instrument that applies to the carrying ou development on the land. The following environmental planning instruments apply to the land:		
		•	S.E.P.P. No. 6
	•	S.E.P.P. No. 19	Bushland in Urban Areas
	•	S.E.P.P. No. 21	Caravan Parks
	•	S.E.P.P. No. 22	Shops and Commercial Premises
	•	S.E.P.P. No. 30	Intensive Agricultures
	•	S.E.P.P. No. 32	Urban Consolidation (Redevelopment of Urban Land)
	•	S.E.P.P. No. 33	Hazardous and Offensive Development
	•	S.E.P.P. No. 50	Canal Estates
	•	S.E.P.P. No. 53	Transitional Provisions
	•	S.E.P.P. No. 55	Remediation of Land
	•	S.E.P.P. No. 62	Sustainable Aquaculture
	•	S.E.P.P. No. 64	Advertising and Signage
	•	S.E.P.P. No. 65	Design Quality of Residential Flat Development

Phone02 9335 2222Fax02 9335 2029TTY02 9335 2025 (hearing impaired)Emailcouncil@marrickville.nsw.gov.auWebsitewww.marrickville.nsw.gov.au

ENGLISH

IMPORTANT

This letter contains important information. If you do not understand it, please ask a relative or friend to translate it or come to Council and discuss the letter with Council's staff using the Telephone Interpreter Service.

GREEK

ΣΗΜΑΝΤΙΚΟ

Αυτή η επιστολή περιέχει σημαντικές πληροφορίες. Αν δεν τις καταλαβαίνετε, παρακαλείστε να ζητήσετε από ένα συγγενή ή φίλο να σας τις μεταφράσει ή να έλθετε στα γραφεία της Δημαρχίας και να συζητήσετε την επιστολή με προσωπικό της Δημαρχίας χρησιμοποιώντας την Τηλεφωνική Υπηρεσία Διερμηνέων.

PORTUGUESE

IMPORTANTE

Este carta contém informação importante. Se não o compreender peça a uma pessoa de família ou a um/a amigo/a para o traduzir ou venha até à Câmara Municipal (Council) para discutir o assunto através do Serviço de Intérpretes pelo Telefone (Telephone Interpreter Service).

ARABIC

تحتوي هذه الرسالة معلومات هامة. فإذا لم تستوعبوها يرجى أن تطلبوا من أحد أقربائكم أو أصدقائكم شرحها لكم، أو تفضلوا إلى البلدية واجلبوا الرسالة معكم لكي تناقشوها مع أحد موظفي البلدية من خلال الإستعانة بخدمة الترجمة الهاتفية.

VIETNAMESE

THÔNG TIN QUAN TRỌNG

Nội dung thư này gồm có các thông tin quan trọng. Nếu đọc không hiểu, xin quý vị nhờ thân nhân hay bạn bè dịch giùm hoặc đem đến Hội đồng Thành phố để thảo luận với nhân viên qua trung gian Dịch vụ Thông dịch qua Điện thoại.

MANDARIN

重要资料

本信写有重要资料。如果不明白,请亲友为您翻译, 或到市政府来,通过电话传译服务,与市政府工作人 员讨论此信。

Cert. No: PC201302185 Page No: 2 of 17

- S.E.P.P. (Housing for Seniors or People with a Disability) 2004
- S.E.P.P. (Building Sustainability Index: BASIX) 2004
- S.E.P.P. (Major Development) 2005
- S.E.P.P. (Mining, Petroleum Production and Extractive Industries) 2007
- S.E.P.P. (Temporary Structures) 2007
- S.E.P.P. (Infrastructure) 2007
- S.E.P.P. (Exempt and Complying Development Codes) 2008
- S.E.P.P. (Affordable Rental Housing) 2009

Any enquiries regarding these State Planning Policies should be directed to the Department of Planning on: 1300 305 695 or 02 9228 6333. Information can also be obtained from the Department's website at <u>http://www.planning.nsw.gov.au</u>

- (1) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).
- 2. The following proposed environmental planning instruments apply to the land:
 - None

(2) The name of each development control plan that applies to the carrying out of development on the land.

- 3. The following development control plans (D.C.P's) apply to the land:
 - Marrickville Development Control Plan 2011

ITEM 2

Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

- (a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),
- (b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Cert. No: PC201302185 Page No: 3 of 17

(c)	the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,
(d)	the purposes for which the instrument provides that development is prohibited within the zone,
(e)	whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed,
(f)	whether the land includes or comprises critical habitat,
(g)	whether the land is in a conservation area (however described),
(h)	whether an item of environmental heritage (however described) is situated on the land.

Item 2 (a), (b), (c) & (d) - Zoning and Land use table

IN1 - General Industrial

1 Objectives of zone

- To provide a wide range of industrial and warehouse land uses.
- To encourage employment opportunities.
- To minimise any adverse effect of industry on other land uses.
- To support and protect industrial land for industrial uses.
- To protect industrial land in proximity to Sydney Airport and Port Botany.
- To enable a purpose built dwelling house to be used in certain circumstances as a dwelling house.
- 2 Permitted without consent

Home occupations

3 Permitted with consent

Agricultural produce industries; Depots; Dwelling houses; Freight transport facilities; General industries; Industrial training facilities; Intensive plant agriculture; Kiosks; Light industries; Markets; Neighbourhood shops; Roads; Take away food and drink premises; Timber yards; Warehouse or distribution centres; Any other development not specified in item 2 or 4

4 Prohibited

Cert. No: PC201302185 Page No: 4 of 17

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Child care centres; Commercial premises; Community facilities; Correctional centres; Eco-tourist facilities; Educational establishments; Environmental facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Function centres; Health services facilities; Heavy industrial storage establishments; Heavy industries; Helipads; Highway service centres; Home occupations (sex services); Information and education facilities; Jetties; Marinas; Mooring pens; Moorings; Offensive industries; Open cut mining; Passenger transport facilities; Places of public worship; Port facilities (outdoor); Registered clubs; Research stations; Residential accommodation; Respite day care centres; Restricted premises; Rural industries; Tourist and visitor accommodation; Transport depots; Veterinary hospitals; Water recreation structures; Water supply systems; Wholesale supplies

Item 2 (e) - Minimum land dimensions

There are NO minimum land dimensions for the erection of a dwelling house on the land. All applications for the erection of a dwelling house will be assessed in accordance with the Environmental Planning and Assessment Act, 1979.

Item 2 (f) - Critical habitat

The land DOES NOT include or comprise critical habitat.

Item 2 (g) - Conservation Area

The land IS NOT within a heritage conservation area referred to in Schedule 5 of Marrickville Local Environmental Plan 2011

Item 2 (h) - Heritage Item

An item of environmental heritage IS NOT situated on the land under Marrickville Local Environmental Plan 2011

Cert. No: PC201302185 Page No: 5 of 17

ITEM 2A

Zoning and land use under State Environmental Planning Policy (Sydney Region Growth Centres) 2006

To the extent that the land is within any zone (however described) under: (a) Part 3 of the <u>State Environmental Planning Policy (Sydney Region Growth Centres)</u> <u>2006</u> (the 2006 SEPP), or

(b) a Precinct Plan (within the meaning of the 2006 SEPP), or

(c) a proposed Precinct Plan that is or has been the subject of community consultation or on public exhibition under the Act,

the particulars referred to in clause 2 (a)–(h) in relation to that land (with a reference to "the instrument" in any of those paragraphs being read as a reference to Part 3 of the 2006 SEPP, or the Precinct Plan or proposed Precinct Plan, as the case requires).

The land IS NOT land to which State Environmental Planning Policy (Sydney Region Growth Centres) 2006 applies.

ITEM 3

Complying development

(1) Whether or not the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (c) and (d) and 1.19 of <u>State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.</u>

(2) If complying development may not be carried out on that land because of the provisions of clauses 1.17A (c) and (d) and 1.19 of that Policy, the reasons why it may not be carried out under that clause.

General Housing Code

No. Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may not be carried out on this land.

The land is excluded land identified as being within ANEF 25 or higher, unless the development is for the erection of ancillary development

The land is excluded land identified on an Acid Sulfate Soils map as being Class 2